

Programmer's Manual

The information in this document is subject to change without notice. Companies, names and data used in
examples herein are fictitious unless otherwise noted. The availability of functions described in this manual
depends on the version, the release level, the installed service packs and other features of your system (e.g.
operating system, word processing software, email software etc.) as well as the general configuration. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
for any purpose, without the express written permission of combit GmbH.

The license agreement can be found at www.combit.net and is displayed in the setup application.

JPEG coding and encoding is done with help of the JPEG Library of the IJG (Independent JPEG Group).

Avery and all Avery brands, product names and codes are trademarks of Avery Dennison Corporation.

PDF creation utilizes wPDF3 (c) wpCubed GmbH - www.pdfcontrol.com.

DataMatrix and QRCode generation is done using RDataMatrix abd QRCode (c) J4L Components.

Aztec Barcode creation utilizes free code from Hand Held Inc.

Not all features are available in all editions. Please note the hints on LL_ERR_LICENSEVIOLATION.

Copyright © combit GmbH 1991-2014; Rev. 20.000

http://www.combit.net

All rights reserved.

http://www.combit.net/
http://www.pdfcontrol.com/
http://www.combit.net/en

Contents

3

Contents

1. Introduction .. 9
1.1 Before Installation ... 9

1.1.1 System Requirements .. 9
1.1.2 Licensing .. 9

1.2 After Installation .. 9
1.2.1 Start Menu .. 9
1.2.2 Designer Quick Start via Sample Application 9
1.2.3 Programming Samples .. 10
1.2.4 Documentation ... 11

1.3 Important Concepts .. 11
1.3.1 Basic Principles .. 11
1.3.2 Project Types .. 13
1.3.3 Variables and Fields ... 13
1.3.4 Available User Interface Languages .. 13

1.4 Getting Started With Programming ... 14
1.4.1 Overview .. 14
1.4.2 Integration With .NET ... 14
1.4.3 Integration With Visual Basic ... 14
1.4.4 Integration With Delphi .. 14
1.4.5 Integration With C++ Builder .. 14
1.4.6 Integration With C/C++ ... 15
1.4.7 Integration With Java ... 15
1.4.8 Integration With Other Programming Languages 15
1.4.9 Hints on Variable and Field Names ... 15
1.4.10 Debugging Support .. 15

2. Programming With .NET .. 16
2.1 Introduction ... 16

2.1.1 Integration in Visual Studio .. 16
2.1.2 Components ... 17

2.2 A component that can be directly bound to a ListLabel instance as a
data source. A description can be found in section " 17

2.3 First Steps .. 18
2.3.1 Integrate List & Label .. 18
2.3.2 License Component ... 19
2.3.3 Binding to a Data Source ... 20
2.3.4 Design ... 20
2.3.5 Print .. 21
2.3.6 Export ... 22
2.3.7 Important Properties of the Component 23
2.3.8 Web Reporting ... 24

2.4 Other Important Concepts .. 25
2.4.1 Data Providers .. 25

Contents

4

2.4.2 Variables, Fields and Data Types ... 31
2.4.3 Events ... 33
2.4.4 Project Types .. 34
2.4.5 Varying Printers and Printing Copies ... 35
2.4.6 Edit and Extend the Designer ... 36
2.4.7 Objects in the Designer .. 37
2.4.8 Report Container .. 39
2.4.9 Object Model (DOM) .. 40
2.4.10 List & Label in WPF Applications .. 41
2.4.11 Error Handling With Exceptions ... 41
2.4.12 Debugging .. 42

2.5 Examples .. 43
2.5.1 Simple Label ... 43
2.5.2 Simple List .. 44
2.5.3 Invoice Merge ... 44
2.5.4 Print Card With Simple Placeholders ... 45
2.5.5 Sub Reports .. 46
2.5.6 Charts .. 47
2.5.7 Cross Tables ... 47
2.5.8 Database Independent Contents .. 47
2.5.9 Export .. 50
2.5.10 Extend Designer by Custom Function ... 51
2.5.11 Join and Convert Preview Files .. 53
2.5.12 Sending E-Mail.. 54
2.5.13 Store Project Files in a Database ... 55
2.5.14 Network Printing ... 55

3. Programming With the OCX Component .. 57
3.1 Integration of the Component .. 57
3.2 Simple Print and Design Methods .. 57

3.2.1 Working Principle ... 57
3.2.2 Using the UserData Parameter ... 58

3.3 Transferring Unbound Variables and Fields .. 58
3.3.1 Pictures ... 59
3.3.2 Barcodes ... 59

3.4 Language Selection ... 59
3.5 Working With Events ... 59
3.6 Displaying a Preview File .. 60
3.7 Working With Preview Files .. 60

3.7.1 Opening a Preview File ... 60
3.7.2 Merging Multiple Preview Files .. 60
3.7.3 Debugging .. 61

3.8 Extending the Designer ... 61
3.8.1 Using the Formula Wizard to Add Your Own Functions 61
3.8.2 Adding Your Own Objects to the Designer 62

3.9 The Viewer OCX Control ... 63

Contents

5

3.9.1 Overview .. 63
3.9.2 Registration .. 64
3.9.3 Properties ... 64
3.9.4 Methods .. 65
3.9.5 Events ... 66
3.9.6 Visual C++ Hint ... 67
3.9.7 CAB Files Packaging ... 67
3.9.8 Inserting the OCX Into Your Internet Page 67

3.10 The Designer OCX Control ... 68
3.10.1 Overview .. 68
3.10.2 Registration .. 68
3.10.3 Properties ... 68
3.10.4 Methods .. 69
3.10.5 CAB Files Packaging ... 69
3.10.6 Inserting the OCX Into Your Internet Page 69

4. Programming With the VCL Component ... 70
4.1 Integration of the Component .. 70
4.2 Data Binding .. 70

4.2.1 Binding List & Label to a Data Source ... 70
4.2.2 Working With Master Detail Records .. 71
4.2.3 Additional Options for Data Binding .. 72

4.3 Simple Print and Design Methods .. 73
4.3.1 Working Principle ... 73
4.3.2 Using the UserData Parameter .. 73

4.4 Transferring Unbound Variables and Fields .. 74
4.4.1 Pictures ... 74
4.4.2 Barcodes ... 74

4.5 Language Selection ... 75
4.6 Working With Events .. 75
4.7 Displaying a Preview File .. 75
4.8 Working With Preview Files .. 75

4.8.1 Opening a Preview File .. 75
4.8.2 Merging Multiple Preview Files ... 76
4.8.3 Debugging .. 76

4.9 Extending the Designer ... 76
4.9.1 Using the Formula Wizard to Add Your Own Functions 76
4.9.2 Adding Your Own Objects to the Designer 78

5. Programming Using the API .. 81
5.1 Programming Interface ... 81

5.1.1 Dynamic Link Libraries ... 81
5.1.2 General Notes About the Return Value 83

5.2 Programming Basics .. 83
5.2.1 Database Independent Concept .. 83
5.2.2 The List & Label Job ... 84

Contents

6

5.2.3 Variables, Fields and Data Types ... 84
5.3 Invoking the Designer .. 89

5.3.1 Basic Scheme ... 89
5.3.2 Annotations .. 90

5.4 The Print Process ... 92
5.4.1 Supplying Data ... 92
5.4.2 Real Data Preview or Print? .. 92
5.4.3 Basic Procedure .. 92
5.4.4 Annotations .. 96

5.5 Printing Relational Data .. 98
5.5.1 API Functions Needed .. 99
5.5.2 Calling the Designer ... 99
5.5.3 Controlling the Print Engine ... 101
5.5.4 Handling 1:1 Relations ... 106

5.6 Callbacks and Notifications... 107
5.6.1 Overview ... 107
5.6.2 User Objects ... 108
5.6.3 Definition of a Callback Routine ... 109
5.6.4 Passing Data to the Callback Routine .. 109
5.6.5 Passing Data by Messages ... 110
5.6.6 Further Hints ... 111

5.7 Advanced Programming .. 111
5.7.1 Direct Print and Export From the Designer................................ 112
5.7.2 Drilldown Reports in Preview ... 115
5.7.3 Supporting the Report Parameter Pane in Preview 119
5.7.4 Supporting Expandable Regions in Preview 120
5.7.5 Supporting Interactive Sorting in Preview 121
5.7.6 Handling Chart and Crosstab Objects .. 121

5.8 Using the DOM-API (Professional/Enterprise Edition Only) 123
5.8.1 Basic Principles ... 123
5.8.2 Examples .. 127

6. API Reference .. 131
6.1 Function Reference .. 131
6.2 Callback Reference ... 272
6.3 Managing Preview Files .. 302

6.3.1 Overview ... 302
6.3.2 The Preview API ... 303

7. The Export Modules ... 329
7.1 Overview .. 329
7.2 Programming Interface .. 329

7.2.1 Global (De)activation of the Export Modules 329
7.2.2 Switching Specific Export Modules On/Off 329
7.2.3 Selecting/Querying the Output Format 330
7.2.4 Setting Export-specific Options ... 331

Contents

7

7.2.5 Export Without User Interaction .. 332
7.2.6 Querying the Export Results .. 332

7.3 Programming Reference .. 333
7.3.1 Excel Export ... 333
7.3.2 HTML Export .. 338
7.3.3 JQM Export .. 347
7.3.4 MHTML Export ... 350
7.3.5 Picture Export ... 350
7.3.6 PDF Export.. 353
7.3.7 Powerpoint Export ... 357
7.3.8 RTF Export .. 360
7.3.9 SVG Export ... 364
7.3.10 Text (CSV) Export ... 369
7.3.11 Text (Layout) Export ... 371
7.3.12 TTY Export .. 374
7.3.13 Windows Fax Export .. 375
7.3.14 Word Export ... 376
7.3.15 XHTML/CSS Export .. 379
7.3.16 XML Export... 386
7.3.17 XPS Export ... 390

7.4 Digitally Sign Export Results .. 391
7.4.1 Start Signature ... 391
7.4.2 Programming Interface .. 391

7.5 Send Export Results via E-Mail .. 394
7.5.1 Setting Mail Parameters by Code .. 394

7.6 Export Files as ZIP Compressed Archive ... 398

8. Miscellaneous Programming Topics ... 400
8.1 Passing NULL Values .. 400
8.2 Rounding .. 400
8.3 Optimizing Speed .. 400
8.4 Project Parameters .. 401

8.4.1 Parameter Types .. 401
8.4.2 Querying Parameter Values While Printing 402
8.4.3 Predefined Project Parameters .. 402
8.4.4 Automatic Storage of Form Data ... 403

8.5 Web Reporting ... 405
8.6 Hints for Usage in Multiple Threads (Multithreading) 405

9. Error Codes ... 407
9.1 General Error Codes .. 407
9.2 Additional Error Codes of the Storage API .. 410

10. Debug Tool Debwin ... 412

11. Redistribution: Shipping the Application... 413
11.1 System Requirements ... 413

Contents

8

11.2 64 Bit Modules ... 413
11.3 The Standalone Viewer Application ... 413

11.3.1 Overview ... 413
11.3.2 Command Line Parameters .. 413
11.3.3 Registration ... 414
11.3.4 Necessary Files ... 414

11.4 List & Label Files .. 414
11.5 Other Settings .. 416

12. Update Information for Version 20 ... 417
12.1 Overview .. 417

12.1.1 General/API ... 417
12.1.2 New features ... 417

12.2 Updating to List & Label 20 ... 418
12.2.1 General .. 418
12.2.2 Updating .NET Projects .. 418
12.2.3 What's New ... 419
12.2.4 Changes Compared to the Previous Version 419
12.2.5 Updating Projects Using the OCX (e.g. Visual Basic) 419
12.2.6 Updating Projects Using the VCL (e.g. Delphi) 420
12.2.7 Updating Projects Using the API (e.g. C/C++) 420

13. Help and Support ... 421

14. Index .. 422

Before Installation

9

1. Introduction

Congratulations on your purchase of List & Label. List & Label is a high-performance
tool for printing reports, lists, labels and barcodes.

With this tool you will have no problems enabling your programs to print
professionally and with an attractive design.

1.1 Before Installation

1.1.1 System Requirements

Windows XP, Windows 2003, Windows Vista, Windows Server 2008, Windows 7 or
Windows 8.

You also need a Windows standard printer driver with a resolution of at least 300 dpi
even if you are not printing.

Some of the described functions (or the way these are accessed) depend on version,
release, patch level etc. of your system/operating system and its configuration. Some
functions may not be able to be used in all operating systems. You will find such
limitations documented in the corresponding chapters.

If you want to use the Word (DOCX) export, the .NET Framework 3.5 is required on
the developer as well as the end user machine.

1.1.2 Licensing

List & Label is being offered in various editions which vary regarding features and
licensing conditions. You will find a verbose description and comparison of the
different editions and licensing conditions at http://www.combit.net/en/Licensing.

1.2 After Installation

1.2.1 Start Menu

After installing List & Label, you will find the program group combit > combit List &
Label 20 in the Windows start menu. This program group enables you to access all
important information regarding integration, documentation and examples, as well as
further useful tips and tricks. This group will be the starting point for the following
chapters.

1.2.2 Designer Quick Start via Sample Application

A quick way to become acquainted with the Designer and its possibilities is to use
the List & Label sample application. This standalone sample application is just for

http://www.combit.net/en/Licensing

Introduction

10

demonstration purposes and shows the various possibilities which the Designer
offers. The data is taken from a fixed sample database.

You will find the application in the start menu group. It enables you to start the List &
Label Designer immediately, and gain an overview of its functionality and flexibility
through the wide variety of layout examples provided. The Designer is started by
clicking Design from the menu and selecting an entry - e.g. invoice. Before the actual
start, you can select an existing project file in the file selection dialog – or enter a
new file name. The full functionality of the List & Label Designer – from the
perspective of this sample application – is now available to you.

In addition, the List & Label sample application allows you to print existing or newly
created projects using sample data records, or to use one of the export formats for
output. Select one of the items in the Print menu. In the subsequent print options
dialog, you can choose the output destination or export format.

1.2.3 Programming Samples

In order to ensure quick familiarization with the List & Label concept, a wide variety of
programming examples are supplied with the installation. You will find these in the
start menu group under "Examples".

Important Concepts

11

You will find many different programming examples in the directories, depending on
the installed development environment.

Further information on the individual examples as well as explanations on the
methods and components used can be found in the List & Label Start Center, which
is started directly after installation or is available in the start menu group.

1.2.4 Documentation

You will find all available documentation under the "Documentation" start menu
group.

 This includes the Programmers' Manual and the Designer Manual as PDF
documents. You will also find various online help systems here, e.g. for the Designer
or the List & Label components (.NET, VCL, OCX), as well as further information on
redistribution, web reporting, debug etc.

1.3 Important Concepts

1.3.1 Basic Principles

List & Label is not a standalone application but a development component that is
integrated into your application. With just a few lines of code you can enhance your
application with reporting and printing capabilities of various kinds: Reports,
subreports, lists, crosstabs, charts, diagrams, gauges, forms, labels, printing, print
preview, export and web reporting.

Creating Report Templates in the Designer

The Designer functionality for interactive visual creation of reports, print templates
etc. is an integrated part of the List & Label component and therefore will become
part of your application. The Designer is not a standalone application, but it will be
programmatically launched from your application. This is typically implemented
within an event handler triggered by a menu item. The Designer will show up as a
modal pop-up window overlapping you application window.

Introduction

12

You can pass on this designing capability to your end users so that they can define
individual templates or adapt the templates offered by you to personal requirements.

Print or Export: Generating Reports

To generate reports that have been designed by you or your end-users and send
them to the printer or display them in the print-preview all data/records to be
processed is being passed on to List & Label. Depending on the programming
language this will either happen under the surface automatically when List & Label
directly accesses your application's data by using specific data providers or it is being
done explicitly by your source code, e.g. if your data is not stored in a database at all.
A mixture between database data and application specific data is possible, too.

Besides sending the report to the printer or preview, List & Label offers various other
output formats such as PDF, HTML, XHTML/CSS, JQM, XML, RTF, XLS, DOCX, TIFF,
JPEG, PNG, plain text, bitmap and others. This is achieved by special export
modules. From the developer's point of view there is no difference between printing
and exporting the report.

Displaying Reports

The print preview can be used to display List & Label outputs automatically, save
them to file, convert them to other formats, send them as email, and more.
Additionally it can be embedded via a separate component into your own dialogs
resp. forms or HTML internet/intranet pages.

Important Concepts

13

1.3.2 Project Types

List & Label can handle different project types: label and file card projects on the one
hand, and list projects on the other.

Labels and File Cards

These projects consist of an arrangement of objects, which are printed once (file
cards) or multiple times (in columns or rows, labels) per page.

Lists

Lists, on the other hand, consist of objects which are printed once per page, and one
or more objects which are filled repeatedly with varying contents depending on the
data records. The table, crosstab and the report container objects are responsible for
these "repetitive areas" and therefore are only available in this mode.

1.3.3 Variables and Fields

List & Label distinguishes between two kinds of data fields: on the one hand there
are data fields that are filled with content once per printed page (once per label or file
card), these are called "variables" in the List & Label terminology. On the other hand,
in a report, there are data fields that are filled repeatedly with different contents for a
page, e.g. the data fields of an item list of an invoice. These data fields are called
"fields" in the List & Label terminology.

For this reason, in file card or label projects only variables can be used, while in list
projects both variables and fields can occur. For printing an invoice, an application
would typically declare the invoice header data such as customer name and address
as variables, while the item data such as article number, unit price, description etc.
would be passed as fields.

1.3.4 Available User Interface Languages

List & Label is available in several languages. Supplying additional languages is
possible due to the modular architecture of List & Label. Besides the Designer, the
printer, preview and export dialogs are localized by the language kits as long as they
are not made up of common dialogs which are localized by the OS.

In order to integrate a language kit after purchase (the Enterprise Edition already
includes all available language kits), use the corresponding language constant for
LlJobOpen() or set the "Language" property to the desired value when using a
component. Also supply your customers with the language files (cmll20??.lng,
cmsl20??.lng). List & Label expects the files to be in the same path as the main DLL
cmll20.dll.

Introduction

14

1.4 Getting Started With Programming

1.4.1 Overview

The following picture shows the basic structure of List & Label from a programmer's
point of view:

List & Label DLL

Core APIStorage API

ActiveX Control VCL Control .NET Control

Application

Databinding VCL
Control

DOM API

JAVA JNI

1.4.2 Integration With .NET

Please refer to the section "Programming With .NET" for further information.
Afterwards, we recommend further reading starting from section "The Export
Modules", if applicable.

1.4.3 Integration With Visual Basic

For integration of List & Label with Visual Basic we recommend using the
OCX/ActiveX component. Please refer to the OCX online help.

If you wish to use direct DLL access via API and no OCX component, add the file
cmll20.bas, where you will find the necessary declarations. Please refer to the
section "Programming Using the API" for further information in this case.

1.4.4 Integration With Delphi

Please refer to the online help for the VCL component's use.

1.4.5 Integration With C++ Builder

Please refer to the online help for the VCL component's use.

Getting Started With Programming

15

1.4.6 Integration With C/C++

Integration of List & Label with C/C++ is typically done by directly using the API. .
Please refer to the section "Programming Using the API" for further information.

1.4.7 Integration With Java

Integrating List & Label into a Java application is done by adding the "combit"-
package which is located in each of the provided programming samples for Java.
Programming is done by calling the API directly. See chapter "Programming Using the
API" for further information. Please also note that the provided Java Native Interface
(JNI) Wrapper DLL has to be located in the List & Label search path. Further
information can be found in chapter "Redistribution: Shipping the Application".

1.4.8 Integration With Other Programming Languages

For various programming languages, the installation of List & Label contains
declaration files as well as examples. You will find these files in the corresponding
sub-directories of your List & Label installation. Follow the documentation of your
programming language to include DLL's via API or OCX/ActiveX components.

If your programming language is not included, you can create a declaration file on
your own by following the appropriate steps for your programming language. Your
programming language just needs to support invoking an API via calling DLL
functions.

In case of doubt, please contact our support.

1.4.9 Hints on Variable and Field Names

In variable names, the only characters that should be used are 'A' through 'Z', 'a'
through 'z', '.', '_' and umlaut characters. They must not start with numbers. Invalid
characters will be replaced by "_". A dot is the separator for hierarchies. This way you
can use e.g. "person.address.street" and "person.address.city" as variables or fields.
In the Designer you get a hierarchical structure i.e. below "person" you will find a
folder "address" with the fields "city" and "street".

The names of variables/fields must not be ambiguous.

1.4.10 Debugging Support

A significant part of the development process of an application is the detection and
removal of bugs.

List & Label offers the possibility of logging all function calls in order to facilitate the
removal of faults in your programs. All function calls including their parameters and
the return value are shown on the debugging output. These can be displayed with
the combit Debwin-Tool which is included in the package. See chapter "Debug Tool
Debwin" for further details.

Programming With .NET

16

2. Programming With .NET

2.1 Introduction
For using List & Label with .NET several components are available, making the
creation of reports on the .NET platform as easy as it can be. This tutorial shows the
most important steps to work fast and productively with List & Label.

The complete programming interface is documented in the component help for

.NET in detail. You will find it in the Documentation folder of your installation

(combit.ListLabel20.chm).

2.1.1 Integration in Visual Studio

The List & Label .NET component is automatically integrated in Microsoft Visual
Studio. For other programming environments or in case of a fresh installation of the
development environment this can also be done manually. The components in form
of an assembly are located in the directories "Programming Samples and
Declarations\Microsoft .NET\” as well as "Redistributable Files\” of the List & Label
installation. The integration is done as follows:

 Menu bar Tools > Choose Toolbox Items…

 Select tab .NET Framework Components

 Click button Browse...

 Select combit.ListLabel20.dll

Now the List & Label components can be dragged onto a form via Drag & Drop as
usual. In the properties window the specific properties can be edited and event
handlers can be added.

If the components are not available in Visual Studio from version 2010 the cause can
be that the Client Profile is selected as the target platform. Further information can
be found in section "Integrate List & Label".

To integrate the List & Label .NET Help into the Visual Studio 2010 Help Viewer
please follow these steps:

 Open Visual Studio 2010

 Select 'Help > Manage Help Settings' to start the Help Library Manager

 You might have to select a location for the local content at first. Confirm this
dialog with 'OK'.

 Select the item 'Install content from disk'

 Click 'Browse' and navigate to the 'Documentation\Files' subdirectory of your
List & Label installation

 Then select 'helpcontentsetup.msha' and click 'Open'

A component that can be directly bound to a ListLabel instance as a data source. A
description can be found in section "

17

 Back in the Help Library Manager click 'Next'

 In the following dialog you will see the available help files including 'combit
List & Label 20 - .NET Help'; select 'Add' here

 Now click 'Update' to integrate the help into the Help Viewer

 Click 'Yes' in the Security Alert dialog to confirm the digitally signed help file

 After updating the local library click 'Finish' to complete the integration of the
help. Now you can use the List & Label .NET help by pressing F1 in Visual
Studio at any time.

To remove the List & Label .NET Help from Visual Studio 2010 Help Viewer please
follow the above steps and select 'Remove content' instead.

2.1.2 Components

In the tab "combit LL20” in the toolbox the following components can be found after
the installation:

Components Description

ListLabel The most important component. All
essential functions, such as print, design
and export, are combined in it.

DataSource

2.2 A component that can
be directly bound to a
ListLabel instance as a
data source. A
description can be
found in section "

Data Provider".

DesignerControl A component for displaying the Designer
in custom forms.

ListLabelRTFControl A RTF editor component for use in
custom forms.

ListLabelPreviewControl A preview control that can also be used
in custom forms and supports the direct
export to PDF for example. To perform a
print into such a preview control, set the
property AutoDestination to
LlPrintMode.PreviewControl in the
ListLabel component and select the

Programming With .NET

18

Components Description

desired preview control for the
"PreviewControl" property.

ListLabelDocument A descendant of PrintDocument. The
built-in .NET preview classes can be
used for displaying List & Label preview
files with it.

ListLabelWebViewer An ASP.NET control for displaying
preview files in Internet Explorer and
Firefox.

2.3 First Steps
This paragraph guides you through the first steps that are required to integrate List &
Label in your existing application.

2.3.1 Integrate List & Label

First a reference to the List & Label assembly has to be added to the project. It is
located in the directory "Programming Samples and Declarations\Microsoft .NET\” of
the installation. Via Project > Reference the assembly can be added to the project.

The assembly combit.ListLabel20.dll supports the "full” .NET Framework. If the .NET
Client Profile is desired as a target platform instead, the assembly
combit.ListLabel20.ClientProfile.dll has to be referenced.

The .NET Client Profile is a subset of the .NET Framework. From Visual Studio 2010

on, it is the standard target platform for Winforms applications. We recommend

that you select the "full" Framework in the properties of the application project as a

target at first and reference the combit.ListLabel20.dll assembly to have

SmartTags support and property editors at design time. After the design stage, the

target platform can be edited if necessary and the ClientProfile assembly can be

referenced.

In the second step an instance of the component can be created. This can be done
either by the development environment directly by dragging the ListLabel component
onto a form. Alternatively the component can also be created dynamically:

C#:

combit.ListLabel20.ListLabel LL = new combit.ListLabel20.ListLabel();

VB.NET:

Dim LL As New combit.ListLabel20.ListLabel()

First Steps

19

Generally the namespaces combit.ListLabel20 and combit.ListLabel20.DataProviders
are prereferenced for the whole file, depending on the programming language by
"using” (C#) or "Imports” (VB.NET). This saves a lot of typing later.

C#:

using combit.ListLabel20;
using combit.ListLabel20.DataProviders;

VB.NET:

Imports combit.ListLabel20
Imports combit.ListLabel20.DataProviders

When using dynamic creation, the component should be released by the Dispose
method after its use, so that the unmanaged resources can be released as soon as
possible.

C#:

LL.Dispose();

VB.NET:

LL.Dispose()

Due to performance reasons it is recommended that you always keep an instance of
the ListLabel object in memory globally for the dynamic creation as well. It can be
created in the Load event of the application's main window and released again in the
FormClosed event for example. The essential advantage is that the List & Label
modules won't be loaded and released for every new instance, which can lead to
undesirable delays of frequent calls or e.g. multiple prints.

2.3.2 License Component

During the installation of the full version (not the Trial version) a file with the personal
license and support information is created in the start menu. To successfully use List
& Label on end user machines it is mandatory to pass the license key included in this
file to all instances of the ListLabel object. The object provides the property
LicensingInfo for that. A sample call could be as following:

C#:

LL.LicensingInfo = "A83jHd";

VB.NET:

LL.LicensingInfo = "A83jHd"

where the part in quotes must be replaced by the license code in the text file.

Programming With .NET

20

Please note: for the trial version, an empty string should be used as license code.

2.3.3 Binding to a Data Source

For design and print List & Label has to have knowledge of a data source. An
overview about the available data sources can be found in the section "2.4.1 Data
Providers". Of course additional unbound, custom data can be passed, too. An
example for that can be found in "2.5.8 Database Independent Contents".

To bind List & Label to the data source the component provides the property
DataSource. The binding can be done either interactively in the development
environment by using the property windows or the SmartTags of the component or
alternatively on code level:

C#:

LL.DataSource = CreateDataSet();

VB.NET:

LL.DataSource = CreateDataSet()

The CreateDataSet() routine in this sample is a placeholder for a method of your
application which prepares the DataSet required for the report.

2.3.4 Design

The Designer is called by the Design method and will be displayed as a modal pop-
up window that overlaps your application window. A data source always has to be
assigned beforehand. This is the basis for the data available in the Designer.
Therefore there is no stand-alone design application; the data is always provided
directly by the application, List & Label itself never directly accesses the data.

The full call – with a DataSet as data source in this example – would be:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();
LL.Design();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()
LL.Design()
LL.Dispose()

First Steps

21

By default a file selection dialog is displayed to the user, where he can either provide
a new name for the report file and therefore create a new report or select an existing
file for editing. Of course this can also be suppressed – the section "Important
Properties of the Component" describes how to do that.

Using the Designer itself is explained in detail in the corresponding online help and in
the Designer manual. The result of the design process is generally four files that are
created by the Designer. The file extensions can be assigned freely by using the
FileExtensions property of the ListLabel component. The following table describes
the files for the default case.

File Content

<Reportname>.lst The actual project file. It contains information about the
formatting of the data to print, but not the data itself.

< Reportname >.lsv A JPEG file with a sketch/thumbnail of the project for
display in the file selection dialog.

< Reportname >.lsp File with user-specific printer and export settings. This
file should not be redistributed if the design computer is
not identical with the print computer as the printer
stored in the file usually does not exist.

< Reportname >.~lst Is created as soon as the project is saved for the second
time within the Designer and contains a backup of the
project file.

The most important file is of course the project file. The other files will automatically
be created by List & Label at application runtime.

At print time the actual report is created by the combination of project file and data
source. In practice it is often also desired to keep the project files in a central
database. How this is done is described in section "Store Project Files in a Database".

2.3.5 Print

The print is called by the method Print(). A project file for the data structure of the
selected data source must first be created in the Designer. It is easiest to bind the
component to the same data source at print and design time. So the preview in the
Designer displays the correct data and the user can easily visualize the result at
runtime. A full call of the print would be:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();
LL.Print();
LL.Dispose();

Programming With .NET

22

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()
LL.Print()
LL.Dispose()

By default a file selection dialog is displayed at first, followed by a print options
dialog. The section "Important Properties of the Component" describes how these
can be avoided or be prefilled if desired.

2.3.6 Export

Export means the output to one of the supported output formats like PDF, HTML,
RTF, XLS, etc. The code for starting an export is identical with a print, in the print
options dialog the user can choose any export format besides the "normal” output
formats Printer, File and Preview. If a format is to be preselected by default, the print
start could be as follows:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();
LL.ExportOptions.Add(LlExportOption.ExportTarget, "PDF");
LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()
LL.ExportOptions.Add(LlExportOption.ExportTarget, "PDF")
LL.Print()
LL.Dispose()

The available export targets are listed in the following table:

Export target Value for ExportTarget

Printer PRN

Preview PRV

Adobe PDF Format PDF

XHTML/CSS Format XHTML

Multi-Mime HTML Format MHTML

Microsoft Excel Format XLS

Microsoft Word Format DOCX

Microsoft XPS Format XPS

First Steps

23

Export target Value for ExportTarget

Rich Text Format (RTF) RTF

Multi-TIFF Picture PICTURE_MULTITIFF

TIFF Picture PICTURE_TIFF

PNG Picture PICTURE_PNG

JPEG Picture PICTURE_JPEG

Bitmap Picture PICTURE_BMP

Metafile Picture (EMF) PICTURE_EMF

File FILE

HTML Format HTML

HTML jQuery Mobile Format JQM

Pinwriter (TTY) TTY

Text (CSV) Format TXT

Text (Layout) Format TXT_LAYOUT

XML Format XML

The other options (e.g. font embedding, encryption, etc.) can also be preset with
default values directly from code. This is done, as in the example above, by using the
ExportOptions class; the LlExportOption enumeration contains all supported options
as values.

Most frequently these are required to execute a "silent" export. It is more convenient
to use the Export() method of the component. Please see the Export sample for C#
and VB.NET.

2.3.7 Important Properties of the Component

The behavior of print, design and export can be controlled by some of the
component's properties of the component. The most important are listed in the
following table:

Property Function

AutoProjectFile Name of the project file to use. This is the default name
for the project if a file selection dialog is provided.
Otherwise it is the name of the project to use (Default:
empty).

AutoDestination Output format. If desired a format can be forced for the
user by this property, e.g. Print is only allowed to printer
or preview (Default: LlPrintMode.Export).

If a selection of export formats is to be allowed, it can

Programming With .NET

24

Property Function

be done by setting LlOptionString.ExportsAllowed. An
example can be found in section "Restriction of Export
Formats".

AutoFileAlsoNew Sets if the user is allowed to use a new file name for
design in order to create a new project (Default: true).

AutoProjectType Sets the project type. The different project types are
described in section "Project Types" (Default:
LlProject.List).

AutoShowPrintOptions Sets if the print options dialog is displayed or
suppressed (Default: true, display).

AutoShowSelectFile Sets if the file selection dialog is displayed or
suppressed (Default: true, display).

AutoMasterMode Used together with the DataMember property to pass
the master/parent table of 1:n linked data structures as
variables. An example can be found in section "Variables,
Fields and Data".

2.3.8 Web Reporting

Printing within a web application is basically the same as an export e.g. to PDF
format, where all dialogs are suppressed. How this is done in general is described in
section "Export Without User Interaction". After the report is generated that way, the
browser of the user can be directed to the created file by the usual mechanisms.
Alternatively the file can be sent directly to the user via e-mail if the creation is to be
scheduled (see section "Sending E-Mail").

Generally the project files are created within a client application and then published
together with the web application. For the design in the browser Designer controls
are available for all common browsers. The provided web reporting sample for C#
and VB.NET shows how to do this. The following image visualizes the principle:

Other Important Concepts

25

User Request

to Server
Your Application

Data

Print

Preview

Export

User Can

View Result

in Browser

Redirect

Client Server

A printer driver has to be installed on the server as well so the print can be

successfully executed. List & Label works closely together with the Windows-GDI

and therefore requires a printer device context for all operations. The Microsoft

XPS printer driver (automatically installed on all systems from .NET Framework 3.5

and higher) is also suitable as a reference printer.

2.4 Other Important Concepts

2.4.1 Data Providers

Providing data in List & Label is done with data providers. These are classes that
implement the interface IDataProvider from the combit.ListLabel20.DataProviders
namespace. Within this namespace a lot of classes are already contained which can
act as a data provider. A detailed class reference can be found in the .NET
component help.

For data formats that are apparently not directly supported, a suitable provider is
found in most cases anyway. Business data from applications can generally be
passed through the object data provider. If the data is present in comma-separated
form, the data provider from the "Dataprovider” sample can be used. Many other
data sources support the serialization to XML, so that the XmlDataProvider can be
used. If only a small amount of additional information is to be passed, it is possible to
do it directly. A sample is shown in paragraph "Database Independent Contents".

Once List & Label is bound to a DataProvider, it supports the following features
automatically if applicable to the data source:

 real data preview in the Designer

 report container and relational data structure

 sortings

 drilldown

Programming With .NET

26

The following overview lists the most important classes and their supported data
sources.

AdoDataProvider

Offers access to data of the following ADO.NET elements:

 DataView

 DataTable

 DataViewManager

 DataSet

The provider can be assigned implicitly by setting the DataSource property to an
instance of any of the supported classes. Of course the provider can also be
explicitly assigned.

This data provider automatically supports a single level sorting by any field,
ascending or descending.

Example:

C#:

ListLabel LL = new ListLabel();
AdoDataProvider provider = new AdoDataProvider(CreateDataSet());
LL.DataSource = provider;
LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
Dim provider As New AdoDataProvider(CreateDataSet())
LL.DataSource = provider
LL.Print()
LL.Dispose()

DataProviderCollection

This data provider can be used to combine multiple other data providers into one
data source. Use it if you have e.g. multiple DataSet classes from where to pull data
or if you would like to have a mix of XML and custom object data. Example:

This provider supports the same sortings that the providers in the collection do
support.

C#:

DataSet ds1 = CreateDataSet();
DataSet ds2 = CreateOtherDataSet();

// combine the data from ds1 and ds2 into one datasource
DataProviderCollection providerCollection = new DataProviderCollection();

Other Important Concepts

27

providerCollection.Add(new AdoDataProvider(ds1));
providerCollection.Add(new AdoDataProvider(ds2));
ListLabel LL = new ListLabel();
LL.DataSource = providerCollection;
LL.Design();
LL.Dispose();

VB.NET:

Dim ds1 As DataSet = CreateDataSet()
Dim ds2 As DataSet = CreateOtherDataSet()

' combine the data from ds1 and ds2 into one datasource
Dim providerCollection As New DataProviderCollection()
providerCollection.Add(New AdoDataProvider(ds1))
providerCollection.Add(New AdoDataProvider(ds2))
Dim LL As New ListLabel()
LL.DataSource = providerCollection
LL.Design()
LL.Dispose()

DataSource

This data provider is in an exceptional position because it can be inserted as a
component directly from the toolbox. The component provides a few properties,
which are also available through the SmartTags. The most important property is
“ConnectionProperties”. By using the corresponding property editor, a connection
string can be directly created in the development environment that provides access
to following data sources:

 Microsoft Access

 ODBC data sources (e.g. Excel data)

 Microsoft SQL-Server (also file based)

 Oracle databases

Once configured the data source is available in the selection window for the
DataSource of the ListLabel component and can therefore be directly assigned. By
clicking the link “Open report designer…” in the SmartTags of the ListLabel
component the Designer can also be directly opened from within the development
environment, requiring not a single line of code to access the data of a DataSource.

This data provider automatically supports a single level sorting by any field,
ascending or descending.

DbCommandSetDataProvider

Allows combination of multiple IDbCommand implementations into one data source.
It can be used e.g. to access multiple SQL tables and define relations between them.
Another possibility is to combine data from e.g. SQL and Oracle databases into one
data source.

Programming With .NET

28

This data provider automatically supports a single level sorting by any field,
ascending or descending.

ObjectDataProvider

This data provider can be used to access object structures. It can work with the
following types/interfaces:

 IEnumerable (requires at least one record though)

 IEnumerable<T>

 IListSource

In order to influence the property names and types, you may either implement the
ITypedList interface on your class or use the DisplayNameAttribute. To suppress
members, use the Browsable(false) attribute on the members.

The provider can also parse empty enumerations as long as they are strongly typed.
Otherwise, at least one element is required in the enumeration and this first element
determines the type that is used for further parsing.

The provider automatically supports sorting as soon as the data source implements
the IBindingList interface.

You may also use this data provider to access LINQ query results, as they are
IEnumerable<T>.

When using EntityCollection<T> objects as data source the ObjectDataProvider first
checks the state of the sub relation by the IsLoaded property and dynamically calls
Load() if necessary. The data is provided when needed with it. Example:

C#:

class Car
{
 public string Brand { get; set; }
 public string Model { get; set; }
}

List<Car> cars = new List<Car>();
cars.Add(new Car { Brand = "VW", Model = "Passat"});
cars.Add(new Car { Brand = "Porsche", Model = "Cayenne"});
ListLabel LL = new ListLabel();
LL.DataSource = new ObjectDataProvider(cars);
LL.Design();
LL.Dispose();

VB.NET:

Public Class Car
 Dim _brand As String
 Dim _model As String

 Public Property Brand() As String

Other Important Concepts

29

 Get
 Return _brand
 End Get
 Set(ByVal value As String)
 _brand = value
 End Set
 End Property
 Public Property Model() As String
 Get
 Return _model
 End Get
 Set(ByVal value As String)
 _model = value
 End Set
 End Property
End Class

Dim LL As New ListLabel
Dim Cars As New List(Of Car)()
Dim Car As New Car
Car.Model = "Passat"
Car.Brand = "VW"
Cars.Add(Car)
Car = New Car
Car.Model = "Cayenne"
Car.Brand = "Porsche"
Cars.Add(Car)
LL.DataSource = New ObjectDataProvider(Cars)
LL.AutoProjectType = LlProject.List
LL.Design()
LL.Dispose()

OleDbConnectionDataProvider

Allows binding to an OleDbConnection (e.g. Access database file). This data provider
automatically supports a single level sorting by any field, ascending or descending.

Example:

C#:

OleDbConnection conn = new
OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +
DatabasePath);
OleDbConnectionDataProvider provider = new OleDbConnectionDataProvider(conn);
ListLabel LL = new ListLabel();
LL.DataSource = provider;
LL.Design();
LL.Dispose();

Programming With .NET

30

VB.NET:

Dim conn As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=" + DatabasePath)
Dim provider As New OleDbConnectionDataProvider(conn)
Dim LL As New ListLabel()
LL.DataSource = provider
LL.Design()
LL.Dispose()

OracleConnectionDataProvider

Allows binding to an OracleConnection. This provider is not available if the target
platform is the .NET Client Profile.

This data provider automatically supports a single level sorting by any field,
ascending or descending.

SqlConnectionDataProvider

Allows binding to a SqlConnection. This data provider automatically supports a single
level sorting by any field, ascending or descending.

Example:

C#:

SqlConnection conn = new
SqlConnection(Properties.Settings.Default.ConnectionString);
SqlConnectionDataProvider provider = new SqlConnectionDataProvider(conn);
ListLabel LL = new ListLabel();
LL.DataSource = provider;
LL.Design();
LL.Dispose();

VB.NET:

Dim conn As New SqlConnection(Properties.Settings.Default.ConnectionString)
Dim provider As New SqlConnectionDataProvider(conn)
Dim LL As New ListLabel()
LL.DataSource = provider
LL.Design()
LL.Dispose()

XmlDataProvider

Allows accessing XML data files easily. No schema information in XML/XSD files will
be used and no constraints will be handled. The main purpose of this class is to
provide a fast and easy access to nested XML data. This data provider does not
support any sorting. Example:

C#:

XmlDataProvider provider = new XmlDataProvider(@"c:\users\public\data.xml");

Other Important Concepts

31

ListLabel LL = new ListLabel();
LL.DataSource = provider;
LL.Design();
LL.Dispose();

VB.NET:

Dim provider As New XmlDataProvider("c:\users\public\data.xml")
Dim LL As New ListLabel()
LL.DataSource = provider
LL.Design()
LL.Dispose()

2.4.2 Variables, Fields and Data Types

Variables and fields are the dynamic text blocks for reports and contain the dynamic
part of the data. Variables usually change once per page or report – an example is the
header data of an invoice with invoice number and addressee. Fields on the other
hand usually change for every record; a typical example would be the item data of an
invoice.

Within the Designer variables are always offered outside of the report container (the
"table area”), fields only inside of it, and can only be used there. The separation
serves mainly to help the end user. If he were to place a field in the "outside area”,
the result would -- depending on the print order -- either be the content of the first or
the last record.

Both identifier types (fields and variables) can be ordered hierarchically and are
displayed in a folder structure in the Designer. The database table names are
automatically added by the databinding so that all data from the "OrderData” table
are displayed in a folder "OrderData”.

Custom data can also be ordered hierarchically by using a dot as a hierarchy
separator (e.g. "AdditionalData.UserName”). How to add custom data can be found in
the section "Database Independent Contents".

Variables and Fields With Databinding

Consider the case of a 1:n linked data structure such as "InvoiceHeader” or
"InvoiceItems”. The header data should usually be declared as variables whereas the
actual invoice items should be declared as fields. The properties DataMember and
AutoMasterMode can be used to achieve this:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Order data as variables
LL.DataMember = "InvoiceHeader";
LL.AutoMasterMode = LlAutoMasterMode.AsVariables;

Programming With .NET

32

LL.Design();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Order data as variables
LL.DataMember = "InvoiceHead"
LL.AutoMasterMode = LlAutoMasterMode.AsVariables

LL.Design()
LL.Dispose()

At print time a merge print is automatically generated, if e.g. an invoice form has
been designed, a single invoice with its own page numbering, aggregation, etc. is
created for each record from the invoice head table.

Effect of the option AutoMasterMode. Left: “AsVariables”, right: “AsFields”.

Data Types

Variables and fields are passed in typed form, i.e. depending on the content of the
database as text, number, etc. The databinding usually cares for that automatically,
an explicit passing/assignment of the type is only necessary when custom data is
passed additionally. The correct data type is usually also preselected (e.g. when
passing DateTime objects).

The following table shows the most important data types.

Data type Usage

LlFieldType.Text Text.

LlFieldType.RTF RTF formatted text. This field type can be used in
a RTF field or RTF object in the Designer.

LlFieldType.Numeric Integer. The databinding automatically differs

Master Data

Detail Data

Other Important Concepts

33

Data type Usage

LlFieldType.Numeric_Integer between floating point numbers and integer
values.

LlFieldType.Boolean Logical values.

LlFieldType.Date Date and time values (DateTime).

LlFieldType.Drawing Drawing. Generally the file name is passed.
Directly passing a memory handle is possible for
Bitmaps and EMF files. Databinding automatically
checks the content of Byte fields and declares
them as drawing if a suitable format is found.

LlFieldType,Barcode Barcode. Barcodes are most easily passed as
instances of the LlBarcode class directly in the
Add methods of the Variables and fields property.

LlFieldType.HTML HTML. The content of the variable is a valid HTML
stream, a file name or an URL.

2.4.3 Events

The following table shows some important events of the ListLabel component. A full
reference can be found in the component help for .NET.

Event Usage

AutoDefineField/
AutoDefineVariable

These events are called for each field or variable
before passing it to List & Label. With the event
arguments you can manipulate the name and
content or completely prevent the declaration of
the element. Examples can be found in section
"Database Independent Contents".

AutoDefineNewPage This event is triggered for every new page when
using databinding. Here, you can register
additional required page-specific variables for the
application which are not part of the data source
by using LL.Variables.Add(). Examples can be
found in section "Database Independent
Contents".

AutoDefineNewLine The event is triggered for every new line. If the
application requires additional line-specific data
which is not part of the data source itself, it can
be added in this event by using LL.Fields.Add().
Examples can be found in section "Database
Independent Contents".

DrawObject
DrawPage

These events are each called once before and
after printing the corresponding elements, e.g.

Programming With .NET

34

Event Usage

DrawTableLine
DrawTableField

for each table cell (DrawTableField). The event
arguments contain a Graphics object and the
output rectangle so that the application can
output custom information additionally. That
could be a special shading, a "Trial” character or a
complete specific output.

VariableHelpText You can support your users by displaying help
texts for each variable and field in the Designer.

2.4.4 Project Types

Three different modes of the Designer are available as report type. Which mode is
used depends on the value of the property AutoProjectType.

Lists

This is the default and matches the value LlProject.List for the AutoProjectType
property.

Typical fields of use are invoices, address lists, reports with charts and cross tables,
multi-column lists, briefly all types of reports where a tabular element is required. The
report container is only available in this mode (see section "Also see the hint for
"HTML Formatted Text" in section "Variables, Fields and Data Types".

Report Container").

Labels

This project type matches the value LlProject.Label for the AutoProjectType property.

It is used for the output of labels. As there are no tabular areas and also no report
container, only variables and no fields are available (see section "Variables, Fields and
Data").

If the used data source contains multiple tables, e.g. products, customers, etc. the
source table for printing labels can be selected by the DataMember property of the
component:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Products as data source
LL.DataMember = "Products";

// Select label as project type
LL.AutoProjectType = LlProject.Label;

LL.Design();
LL.Dispose();

Other Important Concepts

35

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Products as data source
LL.DataMember = "Products"

' Select label as project type
LL.AutoProjectType = LlProject.Label

LL.Design()
LL.Dispose()

Cards

This project type matches the value LlProject.Card of the AutoProjectType property.

Card projects are a special case of label projects with exactly one page-filling label.
Typical fields of use are printing file cards (e.g. all customer information at a glance)
or mail merges. Activation is the same as "Labels", the same hints and restrictions
apply therefore.

2.4.5 Varying Printers and Printing Copies

List & Label offers a comfortable support of splitting a report to different printers or
the output of copies with a "Copy” watermark. The best is that these are all pure
Designer features that are automatically supported by List & Label.

Regions

The regions' purpose is to split the project into multiple page regions with different
properties. Typical fields of use are e.g. different printers for first page, following
pages and last page. Further applications are mixing Portrait and landscape format
within the same report.

You can see a demonstration e.g. in the List & Label Sample Application (on the root
level of the start menu) under Design > Extended Samples > Mixed portrait and
landscape.

Issues and Copies

Both issues' and copies' purpose is to output multiple copies of the reports. Copies
are "real” hardware copies, meaning that the printer is assigned to create multiple
copies of the output. Of course all copies are identical and will be created with the
same printer settings.

If the output is to have different properties (e.g. Original from tray 1, copy from tray
2) or a "Copy” watermark is to be output, issues are the way to go. The property
"Number of Issues” in the Designer has to be set to a value greater than one. Then
the function "IssueIndex” is available for all regions, so that a region with the
condition "IssueIndex()==1” (Original) and another with the condition
"IssueIndex()==2” (Copy) can be created.

Programming With .NET

36

The objects in the Designer get a new property "Display Condition for Issue Print”
with which the printing of a watermark can be realized in a similar way.

You can see a demonstration e.g. in the List & Label Sample Application (on the root
level of the start menu) under Design > Invoice > Invoice with issue print.

2.4.6 Edit and Extend the Designer

The Designer is not a "Black Box” for the application, but can be manipulated in many
ways. Besides disabling functions and menu items, user-specific elements can be
added that move calculations, actions or outputs to the function logic.

Menu Items, Objects and Functions

Starting point for Designer restrictions is the DesignerWorkspace property of the
ListLabel object. In the following table the properties listed can be used to restrict
the Designer.

Property Function

ProhibitedActions This property's purpose is to remove single menu items
from the Designer.

ProhibitedFunctions This property's purpose is to remove single functions from
the Designer.

ReadOnlyObjects This property's purpose is to prevent objects' editability in
the Designer. The objects are still visible; however they can't
be edited or deleted within the Designer.

The following example shows how the Designer can be adjusted so no new project
can be created. In addition the function "ProjectPath$” will be removed and the
object "Demo” is prevented from being edited.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Restrict Designer
LL.DesignerWorkspace.ProhibitedActions.Add(LlDesignerAction.FileNew);
LL.DesignerWorkspace.ProhibitedFunctions.Add("ProjectPath$");
LL.DesignerWorkspace.ReadOnlyObjects.Add("Demo");

LL.Design();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

Other Important Concepts

37

' Restrict Designer
LL.DesignerWorkspace.ProhibitedActions.Add(LlDesignerAction.FileNew)
LL.DesignerWorkspace.ProhibitedFunctions.Add("ProjectPath$")
LL.DesignerWorkspace.ReadOnlyObjects.Add("Demo")

LL.Design()
LL.Dispose()

Extend Designer

The Designer can be extended by user-specific functions, objects and actions.

User-specific functions can be used to move more complex calculations to the
application or add functions which are not covered by the Designer by default.

An example for adding a new function can be found in the section "Extend Designer
by Custom Function".

Examples for user-specific objects or actions as well as another user-specific
function can be found in the "Designer Extension Sample” which is located under
"Miscellaneous” in the .NET sample area in the start menu.

2.4.7 Objects in the Designer

Some objects in the Designer only serve for graphical design (e.g. Line, Rectangle,
Ellipse). However, most of the other objects interact with the provided data. Specific
data types are available for that or there are conversion functions which allow
converting contents for use in the corresponding object. The following paragraphs
give an overview of the most frequently used objects, their corresponding data types
and Designer functions for converting contents.

The hints for the single objects are also valid in the same or similar way for (Picture,
Barcode, etc.) columns in table elements.

Text

A text objects consists of multiple paragraphs. Each of these paragraphs does have
specific content. This can be either a variable or a formula which combines multiple
data contents. To display single variables, usually no special conversion is required. If
multiple variables of a different type (see section "Data Types") are to be combined
within a formula, the single parts have to be converted to the same data types (e.g.
string). An example for the combination of numbers and strings would be:

"Total: "+Str$(Sum(Article.Price),0,2)

Programming With .NET

38

The following table lists some of the conversion functions, which are frequently
needed in this context.

From / To Date Number Picture Barcode Text

Date - DateToJulian() - - Date$()

Number JulianToDate() - - Barcode(Str$())
FStr$()
Str$()

Picture - - - - Drawing$()

Barcode - Val(Barcode$()) - Barcode$()

Text Date() Val() Drawing() Barcode() -

Picture

The content of a picture object is set via the property window. The property Data
Source offers three values File Name, Formula and Variable.

 The setting File Name is used for a fixed file, such as a company logo. If the
file is not supposed to be redistributed it can be embedded in the report itself.
The file selection dialog offers the appropriate option.

 With Formula, the content can be set by a string containing a path. The
required function is "Drawing”.

 With Variable, contents already passed as a picture can be displayed (see
section "Data Types").

Barcode

The content of a barcode object is set in a dialog. This dialog offers the three options
Text, Formula and Variable for the data source.

 The setting Text is used for fixed text/content in the barcode. In addition to
the content, the type – e.g. with 2D-Barcodes – and other properties for error
correction or encoding can be set.

 With Formula the content can be set by a string which contains the barcode
content. The required function is "Barcode”.

 With Variable contents already passed as a barcode can be displayed (see
section "Data Types").

RTF Text

The content of a RTF-Text object is set in a dialog. This dialog offers the options
(Free Text) or a selection of possible passed RTF variables (see below) under Source

 The setting (Free Text) is used for fixed text/content in the RTF object. Within
the object, data content can be used at any position (e.g. for personalized
multiple letters) by clicking the formula icon in the toolbar.

Other Important Concepts

39

 By selecting a variable, contents already passed as RTF can be displayed (see
section "Data Types").

HTML

The content of an HTML object is set in a dialog. This dialog offers the three options
File, URL and Formula as a data source.

 The setting File is used for a fixed HTML file.

 With URL, a URL can be passed from where the HTML content should be
downloaded.

 With Formula, contents already passed as an HTML stream can be displayed
(see section "Data Types").

Also see the hint for "HTML Formatted Text" in section "Variables, Fields and Data
Types".

2.4.8 Report Container

The report container is the central element of list projects. It allows displaying tabular
data (also multi-columnar or nested), statistics and charts as well as cross tables.
Data can also be output in different form – e.g. at first for a graphical analysis of the
sales by years and then in a detailed tabular list.

The contents of the container are visible underneath the Report Container object in
the "Objects" tool window. Using this window, new content can be added or existing
content can be edited. The window is a sort of "screenplay” for the report since the
exact order of the single report elements is shown in it.

The Objects tool window in the Designer

To make the report container available, a data provider (see section "Data Providers")
has to be used as data source. Generally it is also possible to perform the complete
printing on your own by using the low-level API functions of the LlCore object,

Programming With .NET

40

however this is not the recommended practice since many features (Designer
preview, Drilldown, report container, …) would have to be specially supported. If in
doubt, it makes more sense to write your own data provider. See section "Database
Independent Contents".

All provided list samples for the .NET Framework make use of the report container
and therefore provide demonstration material for the different operation purposes.

A detailed description for using this element can be found in the Designer Manual
under section "Inserting Report Container”.

2.4.9 Object Model (DOM)

Whereas the Designer is providing a very comfortable and powerful interface for
editing project files, it can often be desired to set object or report properties per
code. For example, the application can display a dialog prior to the Designer with a
data preselection and then start the Designer with a project already prepared with
this selection. An example for that can be found in the sample "Simple DOM
Example” under "Miscellaneous” in the .NET Sample area in the start menu.

Access to the object model is only available from the Professional Edition and

higher.

The following table lists the most important classes and properties of the namespace
combit.ListLabel20.Dom.

Class Function

ProjectList
ProjectLabel
ProjectCard

The actual project classes. These represent the root
element of the project. Key methods are Open, Save and
Close.

<Project>.Objects A list of all objects within the project. The objects are
descendants of ObjectBase and each object contains its
own properties and enumerations (e.g. Text paragraphs).

<Project>.Regions An enumeration of the layout regions of the project. A
page dependent printer control can be realized this way
for example. Further information can be found in section
"Regions".

ObjectText Represents a text object. Key property is Paragraphs,
the actual content of the text.

ObjectReportContainer Represents a report container. Key property is SubItems,
the actual content of the report container.

SubItemTable Represents a table within the report container. It
consists of different line regions (Lines property), which
have different columns (Columns property of a line).

Other Important Concepts

41

Within the single classes, the properties can easily be browsed via IntelliSense. A
complete reference of all classes can be found in the component help for .NET.

2.4.10 List & Label in WPF Applications

As List & Label itself is a non-visual component, it can be used in WPF applications as
well as in WinForms applications. The Designer itself is no WPF window, however
this does not affect its functionality. The WPF Viewer can be used for displaying
preview files and is a replacement for the WinForms PreviewControl.

Please note that the WPF viewer relies on the existence of the XPS Document

Writer printer driver on the target system. If the driver is not available, documents

cannot be displayed.

2.4.11 Error Handling With Exceptions

List & Label defines a number of internal exceptions, which are all derived from the
common base class ListLabelException and therefore can be caught at a central
location. If the application is supposed to carry out its own Exception handling, calls
to List & Label can be enclosed by an Exception handler:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

try
{
 LL.Design();
}
catch (ListLabelException ex)
{
 MessageBox.Show(ex.Message);
}
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

Try
 LL.Design()
Catch ex As ListLabelException
 MessageBox.Show(ex.Message)
End Try
LL.Dispose()

The Message property of the Exception class contains an error text, which – if a
corresponding language kit is present – is also generally localized and can be
displayed directly to the user.

Programming With .NET

42

A complete reference of all Exception classes can be found in the component help
for .NET.

2.4.12 Debugging

Problems occurring on the developer PC can be easily found in most cases. The
usual features of the development environment can be used to spot a problem
relatively quickly. The first step is to catch any occurring exceptions and to find their
cause (see section "Error Handling With Exceptions").

As a development component List & Label is naturally run under a variety of different
constellations on the end user side. To find problems there as easily as possible a
dedicated debug tool is available which provides a logging function for problems
occurring rarely or only on certain systems so problems can also be examined under
systems without a debugger.

Of course the logging function can also be used on the developer PC and provides
the possibility to check all calls and return values at a glance as well.

Create Log File

If a problem only occurs on a customer system, the first thing to do is to create a log
file. The tool Debwin3 can be used for this purpose. It can be found in the "Tools”
directory of the List & Label installation.

Debwin3 has to be started before the application. By Logging > Force Debug Mode
the logging is forced. If the application is started afterwards, all calls of the
component with their return values as well as additional information about module
versions, operation system, etc. will be logged.

Every exception thrown under .NET represents a negative value of a function in the
log. There is usually more helpful information in the log, a typical output could look as
follows.

CMLL20 : 12:30:02.082 00000df0/02 3 LlSelectFileDlgTitleEx(2,0X001310BE,
'(NULL)',0x00008002,0X0344F7C8,260,00000000)
CMLL20 : 12:30:03.672 00000df0/02 4 =-99 (The user aborted the print.) ->
'*.rpt'

First to be seen is the DLL which causes the output, a timestamp for the output, the
thread ID of the output thread, a consecutive number as well as the actual call with
all parameters. In the following line the error code (-99) is returned as well as an
explanation for it – in this case the user has aborted the file selection dialog with
"Cancel”.

If the application is supposed to create debug logs without the help of Debwin3, this
can be done in the configuration file of the application. Logging can be forced as
follows:

<configuration>
 <appSettings>
 <add key="ListLabel DebugLogFilePath"
 value="c:\users\public\debug.log "/>

Examples

43

 <add key="ListLabel EnableDebug" value="1"/>
 </appSettings>
</configuration>

2.5 Examples
The examples in this paragraph show how some typical tasks can be solved. The
code can serve as a template for your own implementations.

For the sake of clarity, the usual error handling is omitted here. All exceptions will

be caught directly in the development environment. For "real" applications we

recommend exception handling as described in section "Error Handling With

Exceptions".

2.5.1 Simple Label

To print a label, use the project type LlProject.Label. If a data source with multiple
tables, such as a DataSet, is connected, the desired data for the label can be
selected by the DataMember property.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Products as data source
LL.DataMember = "Products";

// Select label as project type
LL.AutoProjectType = LlProject.Label;

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Products as data source
LL.DataMember = "Products"

' Select label as project type
LL.AutoProjectType = LlProject.Label

Programming With .NET

44

' Call Designer
LL.Design()

' Print
LL.Print()
LL.Dispose()

2.5.2 Simple List

Print and design of simple lists is the "default” and can be started with just a few
lines of code:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Call Designer
LL.Design()

' Print
LL.Print()
LL.Dispose()

2.5.3 Invoice Merge

An invoice merge is an implicit merge print. The head or parent data contains one
record for each document which is linked 1:n with the detail or child data. To design
and to print such a document the parent table has to be passed to List & Label by the
DataMember property. Furthermore the AutoMasterMode property has to be set to
AsVariables as shown in the following example:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

Examples

45

// Order data as variables
LL.DataMember = "InvoiceHeader";
LL.AutoMasterMode = LlAutoMasterMode.AsVariables;

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Order data as variables
LL.DataMember = "Invoice head"
LL.AutoMasterMode = LlAutoMasterMode.AsVariables

' Call Designer
LL.Design()

' Print
LL.Print()
LL.Dispose();

2.5.4 Print Card With Simple Placeholders

Printing a full-page project which simply contains placeholders set by the application
is achieved easily by binding it to a suitable object:

C#:

public class DataSource
{
 public string Text1 { get; set; }
 public double Number1 { get; set; }
 ...
}

// Prepare data source
object dataSource = new DataSource { Text1 = "Test", Number1 = 1.234 };
ListLabel LL = new ListLabel();
LL.DataSource = new ObjectDataProvider(dataSource);
LL.AutoProjectType = LlProject.Card;

// Call Designer
LL.Design();

// Print

Programming With .NET

46

LL.Print();
LL.Dispose();

VB.NET:

Public Class DataSource
 Dim _text1 As String
 Dim _number As Double

 Public Property Text1() As String
 Get
 Return _text1
 End Get
 Set(ByVal value As String)
 _text1 = value
 End Set
 End Property
 Public Property Number1() As Double
 Get
 Return _number
 End Get
 Set(ByVal value As Double)
 _number = value
 End Set
 End Property
End Class

' Prepare data source
Dim dataSource As Object = New DataSource()
dataSource.Text1 = "Test"
dataSource.Number1 = 1.234
Dim LL As New ListLabel()
LL.DataSource = New ObjectDataProvider(dataSource)
LL.AutoProjectType = LlProject.Card

' Call Designer
LL.Design()

' Print
LL.Print()
LL.Dispose()

2.5.5 Sub Reports

Structuring of reports by using the report container is a pure Designer feature.
Therefore there is no difference from the "normal” list as shown in section "Simple
List”

For using sub tables it is required that parent and child data are relationally linked. So
the first step is to design a table element for the parent table in the report container.

Examples

47

The next step will be to add a sub element with the child data by the toolbar in the
"Objects" window.

At print time the corresponding child sub report will be automatically added for each
record of the parent table. For example the List & Label Sample Application (in the
start menu's root level) demonstrates this under Design > Extended Samples > Sub
reports and relations.

2.5.6 Charts

The chart function is also automatically supported by the report container. See
section "Simple List".

The List & Label Sample Application (in the start menu's root level) contains a variety
of different chart samples under Design > Extended Samples.

2.5.7 Cross Tables

Not surprisingly, cross tables will be implemented the same way as described in
section "Simple List”.

The List & Label Sample Application (in the start menu's root level) contains a variety
of different cross table samples under Design > Extended Samples.

2.5.8 Database Independent Contents

Data is not always available in a database or a DataSet. It can be required to output
further data in addition to the data from the data source, such as a user name within
the application, the project name or similar information. In some cases no suitable
data provider seems to be available at first. These cases will be examined in the
following paragraphs.

Pass Additional Contents

If only a few variables or fields are to be added to the data of the data source, there
are two possibilities:

 If the data is constant during the runtime of the report, it can just be added
prior to the design or print call by using LL.Variables.Add.

 If the data changes from page to page or even from line to line, the
information can be passed within the AutoDefineNewPage or
AutoDefineNewLine events by using LL.Fields.Add or LL.Variables.Add.

The following example shows both approaches:

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Define additional data fields
LL.Variables.Add("AdditionalData.UserName", GetCurrentUserName());
LL.Variables.Add("AdditionalData.ProjectName ", GetCurrentProjectName());

Programming With .NET

48

…

// Add event handling for own fields
LL.AutoDefineNewLine += new AutoDefineNewLineHandler(LL_AutoDefineNewLine);

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

…

void LL_AutoDefineNewLine(object sender, AutoDefineNewLineEventArgs e)
{
 // Switch to next record if necessary
 // GetCurrentFieldValue is function of your application
 // which returns the content of a data field.
 LL.Fields.Add("AdditionalData.AdditionalField", GetCurrentFieldValue());
}

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Define additional data fields
LL.Variables.Add("AdditionalData.UserName ", GetCurrentUserName())
LL.Variables.Add("AdditionalData.ProjectName ", GetCurrentProjectName())
…

' Call Designer
LL.Design()

' Print
LL.Print()
LL.Dispose()

…

Sub LL_AutoDefineNewLine(sender As Object, e As AutoDefineNewLineEventArgs)_
Handles LL.AutoDefineNewLine
 ' Switch to next record if necessary
 ' GetCurrentFieldValue is function of your application
 ' which returns the content of a data field.
 LL.Fields.Add("AdditionalData.AdditionalField ", GetCurrentFieldValue())
End Sub

Examples

49

Suppress Data From a Data Source

Particular fields or variables that are not needed (e.g. ID fields which aren't required
for printing) can be suppressed by using the AutoDefineField and AutoDefineVariable
events.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Add event handling for suppressing fields
LL.AutoDefineField += new AutoDefineElementHandler(LL_AutoDefineField);

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

…

void LL_AutoDefineField(object sender, AutoDefineElementEventArgs e)
{
 if (e.Name.EndsWith("ID"))
 e.Suppress = true;
}

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Call Designer
LL.Design()

' Print
LL.Print()
LL.Dispose()

…

Sub LL_AutoDefineField(sender As Object, e As AutoDefineElementEventArgs)_
Handles LL.AutoDefineNewField
 If e.Name.EndsWith("ID") Then
 e.Suppress = True
 End If
End Sub

Programming With .NET

50

Custom Data Structures / Contents

For data content apparently not directly supported, a suitable provider is found in
most cases anyway. Business data from applications can generally be passed
through the object data provider, if the data is present in comma-separated form, the
data provider from the "Dataprovider” sample can be used. Many other data sources
support the serialization to XML, so that the XmlDataProvider can be used.

Your own class that implements the IDataProvider interface can be used, too, of
course. A good starting point is the DataProvider sample which demonstrates a
simple CSV data provider. Often one of the existing classes can be used as base
class. If for example a data source is to be connected that implements the
IDbConnection interface, it can be inherited from DbConnectionDataProvider. Only
the Init method has to be overwritten, where the available tables and relations have
to be provided. The component help for .NET provides an example of how this is
done for SQL Server data with the SqlConnectionDataProvider. Most database
systems provide similar mechanisms.

At http://lldataproviders.codeplex.com you'll find Open Source implementations for a
range of other data sources like MySQL, PostgreSQL, SQLite, DB2 and Oracle. These
may be a good starting point for your own implemetation as well.

2.5.9 Export

The export formats can be completely controlled "remotely" so that no interaction by
the user is required anymore. Additionally, the selection of formats can be restricted
as required or desired for the specific report.

Export Without User Interaction

This can be easily done by using the ExportConfiguration class of the ListLabel
component.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Set target and path (here: PDF) and project file
ExportConfiguration expConfig = new ExportConfiguration(LlExportTarget.Pdf,
"<Target filename with path>", "<Project filename with path>");

// Show result
expConfig.ShowResult = true;

// Start export
LL.Export(expConfig);
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()

http://lldataproviders.codeplex.com/

Examples

51

LL.DataSource = CreateDataSet()

' Set target and path (here: PDF) and project file
Dim expConfig As New ExportConfiguration(LlExportTarget.Pdf, "<Target
filename with path>", "<Project filename with path>")

' Show result
expConfig.ShowResult = True

' Start export
LL.Export(expConfig)
LL.Dispose()

Many other options can be set using the ExportOptions enumeration of the ListLabel
component.

Restriction of Export Formats

If only specific export formats should be available for the end user, the list of formats
can be restricted exactly to these formats. This is possible with the option
LlOptionString.Exports_Allowed. A list of all available formats can be found in section
"Export".

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Only allow PDF and preview
LL.Core.LlSetOptionString(LlOptionString.Exports_Allowed, "PDF;PRV");

// Print
LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Only allow PDF and preview
LL.Core.LlSetOptionString(LlOptionString.Exports_Allowed, "PDF;PRV")

' Print
LL.Print()
LL.Dispose()

2.5.10 Extend Designer by Custom Function

The following example shows how a function can be added that allows querying a
registry key within a report. The result of the function could be used in appearance

Programming With .NET

52

conditions for objects for example. Of course the properties of the DesignerFunction
class can also be set directly in the properties window of the development
environment.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Initialize function
DesignerFunction RegQuery = new DesignerFunction();
RegQuery.FunctionName = "RegQuery";
RegQuery.GroupName = "Registry";
RegQuery.MinimalParameters = 1;
RegQuery.MaximumParameters = 1;
RegQuery.ResultType = LlParamType.String;
RegQuery.EvaluateFunction += new
EvaluateFunctionHandler(RegQuery_EvaluateFunction);

// Add function
LL.DesignerFunctions.Add(RegQuery);

LL.Design();
LL.Dispose();

…

void RegQuery_EvaluateFunction(object sender, EvaluateFunctionEventArgs e)
{
 // Get registry key
 RegistryKey key = Registry.CurrentUser.OpenSubKey(@"Software\combit\");
 e.ResultValue = key.GetValue(e.Parameter1.ToString()).ToString();
}

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Initialize function
Dim RegQuery As New DesignerFunction()
RegQuery.FunctionName = "RegQuery"
RegQuery.GroupName = "Registry"
RegQuery.MinimalParameters = 1
RegQuery.MaximumParameters = 1
RegQuery.ResultType = LlParamType.String

' Add function
LL.DesignerFunctions.Add(RegQuery)

LL.Design()
LL.Dispose()

Examples

53

…

Sub RegQuery_EvaluateFunction(sender As Object,
 e As EvaluateFunctionEventArgs) Handles RegQuery.EvaluateFunction
 ' Get registry key
 Dim key As RegistryKey
 RegistryKey = Registry.CurrentUser.OpenSubKey("Software\combit\")
 e.ResultValue = key.GetValue(e.Parameter1.ToString()).ToString()
End Sub

2.5.11 Join and Convert Preview Files

The preview format can be used as the output format if, for example, multiple reports
should be joined to one or if archiving the output in the form of a PDF is desired in
addition to the direct output. The following example shows some options of the
PreviewFile class.

C#:

// Open preview files, first file/coversheet with write access
PreviewFile cover = new PreviewFile(@"<Path>\frontpage.ll", false);
PreviewFile report = new PreviewFile(@"<Path>\report.ll", true);

// Append report to first file/coversheet
cover.Append(report);

// Print complete report
cover.Print();

// Convert report to PDF
cover.ConvertTo(@"<Path>\report.pdf");

// Release preview files
report.Dispose();
cover.Dispose();

VB.NET:

' Open preview files, first file/coversheet with write access
Dim cover As New PreviewFile("<Path>\frontpage.ll", False)
Dim report As New PreviewFile("<Path>\report.ll", True)

' Append report to first file/coversheet
cover.Append(report)

' Print complete report
cover.Print()

' Convert report to PDF
cover.ConvertTo("<Path>\report.pdf")

Programming With .NET

54

' Release preview files
report.Dispose()
cover.Dispose()

2.5.12 Sending E-Mail

Sending e-Mail can also be controlled via the list of export options (see section
"Export Without User Interaction") if export and sending should be done in one step.
An example showing that is the Export sample that can be found under "Other” in the
.NET sample area in the start menu.

However, independent of the previous export, it is also possible to send any files via
e-Mail by using the MailJob class. This is especially interesting when generating a
PDF file from the preview file as a source (see section "Join and Convert Preview
Files") and the PDF file is supposed to be sent via e-mail.

C#:

// Instantiate mail job
MailJob mailJob = new MailJob();

// Set options
mailJob.AttachmentList.Add(@"<Path>\report.pdf");
mailJob.To = "info@combit.net";
mailJob.Subject = "Here is the report";
mailJob.Body = "Please note the attachment.";
mailJob.Provider = "XMAPI";
mailJob.ShowDialog = true;

// Send e-Mail
mailJob.Send();
mailJob.Dispose();

VB.NET:

' Instantiate mail job
Dim mailJob As New MailJob()

' Set options
mailJob.AttachmentList.Add("<Path>\report.pdf")
mailJob.To = "info@combit.net"
mailJob.Subject = " Here is the report "
mailJob.Body = " Please note the attachment."
mailJob.Provider = "XMAPI"
mailJob.ShowDialog = True

' Send e-Mail
mailJob.Send()
mailJob.Dispose()

Examples

55

2.5.13 Store Project Files in a Database

Project files can also be stored in a database. Besides the option to unpack these
directly from the database and to store them in the local file system, this job can be
passed to List & Label as well. The Print and Design methods have both overloads
that allow passing a stream directly.

When using these overloads, a few important changes in how these methods work
are to be obeyed. The background for these changes is the missing local file context
and therefore the missing possibility to create new files:

 It is not possible to create a new project in the Designer

 The menu items File > Save as and File > Open are not available

 Project includes are deactivated

 Drilldown is not available

 The Designer function "ProjectPath$” is not available

In the case of designing it can happen of course that the passed stream is being
modified. In this case you have to write the updated stream into the database after
designing.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();
byte[] report = GetReportFromDatabase();
MemoryStream memStream = new MemoryStream(report);

LL.Print(LlProject.List, memStream);
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()
Dim report As Byte() = GetReportFromDatabase()
Dim memStream As New MemoryStream(report)

LL.Print(LlProject.List, memStream)
LL.Dispose()

2.5.14 Network Printing

When printing in the network, keep the following two points in mind:

 Preview files are usually created in the same directory as the project file by the
name of the project file and the extension "LL". If two users want to print the
same file to preview, the second user receives an error message. This can be
avoided by setting LlPreviewSetTempPath() (see example below).

Programming With .NET

56

 The same applies for printer settings files. These also will – with the currently
selected extension – be searched for or created in the directory of the project
file. LlSetPrinterDefaultsDir() should be used here. This setting is of particular
importance if the available printers vary from workstation to workstation.
That's one of the reasons why you shouldn't redistribute printer settings files
to your users.

C#:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Set local temporary path
LL.Core.LlPreviewSetTempPath(Path.GetTempPath());

// Printer settings should be created in user-specific sub directory
// so changes will be stored permanently
LL.Core.LlSetPrinterDefaultsDir(<Path>);

LL.Print();
LL.Dispose();

VB.NET:

Dim LL As New ListLabel()
LL.DataSource = CreateDataSet()

' Set local temporary path
LL.Core.LlPreviewSetTempPath(Path.GetTempPath())

' Printer settings should be created in user-specific sub directory
' so changes will be stored permanently
LL.Core.LlSetPrinterDefaultsDir(<Path>)

LL.Print()
LL.Dispose()

Using the stream overloads of the Print and Design methods is an alternative here.
These, for example, "automatically” take care of storing the printer settings in the
passed stream. Hints as well as an example can be found in section "Store Project
Files in a Database".

Integration of the Component

57

3. Programming With the OCX Component

Parallel with the VCL component and .NET assembly, List & Label includes the OCX
component(s) for integration into your IDE. The following section exclusively
discusses working with this component. If you do not work with the OCX
component, you can skip this section.

3.1 Integration of the Component
The component is integrated by using the cmll20o.ocx file containing the control.
This file is located in the "Redistributable Files" directory. For more information on
how to install the OCX in your IDE, refer to the online help documentation for your
development environment.

After integrating the control, an icon should appear automatically in the component
area of the toolbar or toolbox of your IDE.

Now you can begin customizing List & Label to suit your needs by configuring the
available properties and implementing the required programming logic. There are two
different ways to do this:

 The simple print and design methods

 A separate, iterative print loop

The first option is described below. The iterative approach is for the most part the
same as the direct use of the DLL and is thus covered by the general description of
the List & Label API.

3.2 Simple Print and Design Methods

3.2.1 Working Principle

The print and design methods of the OCX Control implement a standardized print
loop, which can be used directly with most of the simple applications (applications
working with only one table). To print multiple tables, a separate print loop is used
(see chapter Printing Relational Data). In the case of this method, the data is passed
within the events CmndDefineVariables and CmndDefineFields to List & Label. This
allows any data source to be connected individually. The event arguments allow
access to useful information such as user data that has been copied, the Design
mode etc. The property pbLastRecord is used to notify the print loop that the last
data record has been reached. As long as this is not the case, each event is invoked
repeatedly in order to retrieve the data.

The Design method shows the Designer in a modal pop-up window on top of your
application window.

You can specify additional options in the CmndSetPrintOptions event. Internally, this
event is triggered after invoking LlPrintWithBoxStart() but before the actual printing.

Programming With the OCX Component

58

One very simple implementation of the print method looks like this:

Private Sub ListLabel1_CmndDefineVariables(ByVal nUserData As Long, ByVal
bDummy As Long, pnProgressInPerc As Long, pbLastRecord As Long)

 Dim i As Integer

 For i = 0 To Recordset.Fields.Count - 1

 Select Recordset.Fields(i).Type
 Case 3, 4, 6, 7: para = LL_NUMERIC: content$ = Recordset.Fields(i)
 Case 8: para = LL_DATE_MS: a! = CDate(Recordset.Fields(i)): content$ =
a!:
 Case 1: para = LL_BOOLEAN: content$ = Recordset.Fields(i)
 Case Else: para = LL_TEXT: content$ = Recordset.Fields(i)
 End Select

 nRet = LL.LlDefineVariableExt(Recordset.Fields(i).Name, content$, para)
 Next i

 If bDummy = 0 Then
 pnProgressInPerc = Form1.Data1.Recordset.PercentPosition
 Recordset.MoveNext
 End If
End Sub

3.2.2 Using the UserData Parameter

The Print and Design methods allow a UserData parameter of the type "integer" to be
passed. This parameter makes it possible to prepare various data in the event for List
& Label. For example, using the parameter, it would be possible to provide data for
invoice printing as well as for a list of customers.

3.3 Transferring Unbound Variables and Fields
Transferring variables and fields follows the regular List & Label principle. There are
three "API variations" available for the registration.

API Description

LlDefineVariable Defines a variable of the type LL_TEXT and its content.

LlDefineVariableExt As described above; additionally can be transferred
along with the List & Label data type.

LlDefineVariableExtHandle As described above, except that the content must now
be a handle.

One example in which a "text" type variable is registered looks like this:

Language Selection

59

LL.LlDefineVariableExt("MyVariable", "Content", LL_TEXT)

You can find the constants for the List & Label data types in the cmll20.bas (VB) unit
located in your List & Label installation directory.

3.3.1 Pictures

To transfer picture files saved on your system, use

LL.LlDefineVariableExt ("Picture", <file path>, LL_DRAWING)

Graphics are transferred using the "API variation" LlDefineVariableExtHandle(). For
more information about this function, refer to chapter "API Reference".

3.3.2 Barcodes

Barcodes are transferred by using the constant LL_BARCODE.... One example in
which an EAN13-type barcode variable is registered looks like this:

LL.LlDefineVariableExt('EAN13', '123456789012',LL_BARCODE_EAN13);

3.4 Language Selection
The List & Label Designer is available in numerous languages. Thus, the component
provides full-scale support in the implementation of multilingual desktop applications.
There are two ways for telling List & Label which language to use.

 Assigning the "Language" property the appropriate language:

LL.Language = CMBTLANG_ENGLISH

 Set the language directly in the component.

Note: You need the appropriate language kit in order to display the respective

language. For a list of the kits we currently offer and their prices, please visit our

online shop at www.combit.net/en.

3.5 Working With Events
List & Label offers a variety of callbacks, which have been implemented as events in
the List & Label OCX component.

For a detailed description of the available events, please refer to the online help
included with the OCX component.

Programming With the OCX Component

60

3.6 Displaying a Preview File
A separate component exists for displaying previews. To use this component, you
must include the file cmll20v.ocx in your IDE. The component offers special ways to
use the List & Label preview format. For example, you can start a PDF export from
the control. You can also customize the control to meet your specific needs by
displaying/hiding the toolbar buttons with the properties of the control. It is also
possible to respond to the click events of the buttons and store any separate
handling routines that may be necessary.

3.7 Working With Preview Files
The List & Label Storage API allows access to the LL preview files. You can query
general information or the specific pages, merge several files and save user data. To
use the Storage API, you must include the Unit cmls20.bas in your project or invoke
the functions from the OCX Control.

3.7.1 Opening a Preview File

You can open the preview file with the LlStgsysStorageOpen() function. General
information about the file can now be accessed using a whole series of other
functions.

Visual Basic:

Dim hStgOrg As Long

hStgOrg = LL.LlStgsysStorageOpen("C:\Test.ll", "", False, True)

3.7.2 Merging Multiple Preview Files

You can merge multiple preview files. To do this, you must first open the target file.
Since write access is required, you must pass a "false" value for the second
parameter, ReadOnly. Using the LlStgSysAppend() function you can then merge the
files.

Visual Basic:

Dim hStgOrg As Long
Dim hStgAppend As Long

hStgOrg = LL.LlStgsysStorageOpen("C:\Test1.ll", "", False, True)
hStgAppend = LL.LlStgsysStorageOpen("C:\Test2.ll", "", False, True)

LL.LlStgsysAppend hStgOrg, hStgAppend

LL.LlStgsysStorageClose hStgOrg
LL.LlStgsysStorageClose hStgAppend

Extending the Designer

61

3.7.3 Debugging

You can enable debugging for the OCX component by setting the DebugMode
property in the source code to "1", e.g.:

LL.LlSetDebug = 1

For more information about the Debwin debugging tool, please refer to the chapter
"Debug Tool Debwin".

3.8 Extending the Designer
List & Label offers a variety of options for extending the Designer. These include,
among other things, the various events of the component such as a menu operation
and the various features that are available. Yet there are numerous other
possibilities...

3.8.1 Using the Formula Wizard to Add Your Own Functions

The formula wizard and its features are among the most important and powerful
capabilities of the Designer. Using a special List & Label component for the OCX, you
can also integrate fully customized functions into the Designer. To use the control,
you must include the file cmll20fx.ocx in your IDE.

To add a new function, insert this component on a form at the time of design. You
can now set the necessary parameters in the Properties window of this component.

Property Description

Name The unique name of the designer function.

Description An additional description of the function for the formula wizard.

GroupName The group in which the function is displayed in the formula
wizard.

Visible Indicates whether or not the function will be displayed in the
wizard.

MinimumParameters The minimum number of parameters. Permissible values
between 0 and 4.

MaximumParameters The maximum number of parameters. Here too, permissible
values between 0 and 4. The value must be equal to or greater
than the minimum number. Increasing the number results in
optional parameters.

ResultType The data type of the return value.

Programming With the OCX Component

62

Using the properties, you can customize the configuration of the new Designer
function. The parameters for the design functions are defined in the source code.
This may look as follows:

Visual Basic:

Private Sub InitializeDesFunction()
 Dim param1 As DesignerFunctionsParameter
 Dim param2 As DesignerFunctionsParameter

 Set param1 = DesFunc_Add.Parameter1
 param1.Description = "First Value"
 param1.Type = LlParamType.ParamType_Double

 Set param2 = DesFunc_Add.Parameter2
 param2.Description = "Second Value"
 param2.Type = LlParamType.ParamType_Double

 DesFunc_Add.ParentComponent = ListLabel1
End Sub

In order to bring the function to life, you have to handle the event
DesFunc_Add_EvaluateFunction. Using the event arguments, you gain access to the
parameters entered by the user. For example, to return the sum of the two
parameters, use the following lines:

Visual Basic:

Private Sub DesFunc_Add_EvaluateFunction(ResultValue As Variant,
 ResultType As CMLL20FXLibCtl.LlParamType,
 DecimalPositions As Long,
 ByVal Parameters As Long, ByVal Parameter1 As Variant,
 ByVal Parameter2 As Variant, ByVal Parameter3 As Variant,
 ByVal Parameter4 As Variant)

 ResultValue = CDbl(Parameter1) + CDbl(Parameter2)
 ResultType = ParamType_Double

End Sub

Two additional events also give you the option to further modify the function.
DesFunc_Add_CheckFunctionSyntax lets you perform a syntax check. Here you can
check the data types of the parameters and, for example, make sure the parameters
fall within a certain range. DesFunc_Add_ParameterAutoComplete allows you to
define several suggested values for the AutoComplete feature of the formula wizard.

3.8.2 Adding Your Own Objects to the Designer

Similar to the way you add functions to the Designer, you can also define your own
object types and register them in List & Label. The user can access the new objects
in the usual way on the left toolbar and menu.

The Viewer OCX Control

63

Here there is also a special component for adding objects. To use this, you must
include the file cmll20ox.ocx in your IDE.

After adding this component to your form, you can define the properties of the new
object in the Properties window of the component.

The table provides an overview:

Property Description

Name The unique name of the object.

Description This description appears in the Designer. It is allowed to contain
spaces but should not be more than 30 characters long.

Icon The icon of the object that will be shown in the toolbar and menu
in Designer. It should be a 16x16 pixel, 16-color icon.

The component has three types of events. First, the
DesObj_Picture_CreateDesignerObject event is triggered when the user creates a
new object. If desired, you can have an initial dialog appear on the user's screen. For
example, this can be a wizard that helps the user to more easily configure the new
object. If it is not necessary to use this in a particular case, simply skip handling the
event.

The DesObj_Picture_EditDesignerObject event is triggered when the user double-
clicks the newly inserted object or selects "Properties" from the context menu.

After you are finished editing the object, you are prompted by List & Label to show
the object. The DesObj_Picture_DrawDesignerObject event is triggered for this
purpose. Using the usual methods, you can now draw in the workspace. Here, of
course, it is also possible or useful to access the stored object properties.

3.9 The Viewer OCX Control

3.9.1 Overview

The CMLL20V.OCX control can be used to view, export or print List & Label preview
files in your own environment.

It can, for example, be inserted into your own application or into an Internet page.

When printing, the projects will be fitted into the page, automatically taking account
of the "physical page" flag and the page orientation to create the best possible
printout result.

If a URL is given instead of a file name, the control will try to load the file into a
temporary cache on the local hard disk if the URLMON.DLL is registered on the
system, see below.

Please note, that a browser is required that supports ActiveX Controls, for example
MS Internet Explorer.

Programming With the OCX Component

64

3.9.2 Registration

The control can be registered in the usual way, for example with the command
"REGSVR32 CMLL20V.OCX", by the programming environment or by your setup
program. It cannot be used without registration. See REDIST.TXT for more
information.

3.9.3 Properties

AsyncDownload [in, out] BOOL: This is an option to improve the screen update. If
the download is not asynchronous, then the screen around the OCX will not be
updated until the download is finished. On the other hand, you must be careful with
the async download, as you might not be able to set properties like "Page" until the
download is finished (see event LoadFinished). After setting this option, read the
value again to check whether this feature is supported. This has no effect on local
files. Default: FALSE

Enabled [in, out] BOOL: Defines whether the control is enabled or disabled. This will
have an effect on the user interface. Default: TRUE

BackColor [in, out] OLE_COLOR: Defines the background color, i.e. the color that is
painted on:

• the whole background if no preview file can be displayed, and

• the background outside the paper. Default: RGB(192, 192, 192) [light gray]

FileURL [in, out] BSTR: The most important property. Defines the name of the
preview file. This can be a file name as well as a URL. Default: <empty>

Pages [out] Long: The total number of pages in the preview

CurrentPage [in, out] Long: Sets or reads the current page index (1..pages). Default:
1

ToolbarEnabled [in, out] BOOL: Defines whether the toolbar should be displayed.
The toolbar is not necessary, as all of its functions can be called by methods (as an
example, see LLVIEW20.EXE and its menu items). So there is no problem at all in
defining your own toolbar. Default: TRUE

ToolbarButtons [out] LPDISPATCH: Returns a ToolbarButtons object that can be
used to get or set the status of each toolbar button. The object has the following
methods:

 GetButtonState([in] nButtonID) LONG Returns the button state for the
passed TLB: constant.

Value Meaning Constant

-1 Hidden TLBS_PRV_HIDE

The Viewer OCX Control

65

Value Meaning Constant

0 Default TLBS_PRV_DEFAULT

1 Enabled TLBS_PRV_ENABLED

2 Disabled TLBS_PRV_DISABLED

Example:

Dim oTlb as ToolbarButtons
Set oTlb = LlViewCtrl1.ToolbarButtons
MsgBox oTlb.GetButtonState(TLB_PRV_FILEEXIT)

 SetButtonState([in] nButtonID, [in] nButtonState) Sets the button state
for the passed TLB_ constant. See above for valid state values.

Example:

Dim oTlb as ToolbarButtons
Set oTlb = LlViewCtrl1.ToolbarButtons
oTlb.SetButtonState TLB_PRV_FILEEXIT, TLBS_PRV_HIDE

The ID constants can also be found in the file MENUID.TXT of your List & Label
installation.

ShowThumbnails[in, out] BOOL: Defines whether the thumbnail bar is visible in the
preview control. Default: TRUE

SaveAsFilePath [in, out] BSTR: Defines the default path for the "Save as..." dialog.
When using the SaveAs method the user-defined file name will be returned.

CanClose[out] BOOL: Must be used to query the state of the control before closing
the hosting form/page. If the result is FALSE, the control must not be destroyed.

Version [out] LONG: Returns the version number of the OCX control
(MAKELONG(lo,hi)).

3.9.4 Methods

GotoFirst: Shows the first page

GotoPrev: Shows the previous page (if possible)

GotoNext: Shows the next page (if possible)

GotoLast: Shows the last page

ZoomTimes2: Zooms in with a factor of 2

ZoomRevert: Resets to the previous zoom state (the zoom states are on a stack,
where ZoomRevert pops the last one off before resizing to that zoom state).

ZoomReset: Resets the zoom state to "fit to client window".

Programming With the OCX Component

66

SetZoom ([in] long nPercentage) : Sets the zoom to the passed factor (1-30).

PrintPage ([in] Long nPage, [in] Long hDC): Prints the page (nPage = 1..page). If
hDC is NULL, a printer dialog will be shown.

PrintCurrentPage ([in] Long hDC): Prints the current page. If hDC is NULL, a printer
dialog will be shown.

PrintAllPages ([in] BOOL bShowPrintOptions): Prints all pages of the project. If
bShowPrintOptions is TRUE, a printer dialog will be shown.

RefreshToolbar: Refreshes the toolbar

SendTo: Starts "Send"

SaveAs: Starts "Save As"

GetOptionString([in] BSTR sOption) BSTR: Returns mail settings. See the chapter
on project parameters for more information. The available options are documented in
chapter "Send Export Results via E-Mail".

SetOptionString([in] BSTR sOption, [in] BSTR sValue) BSTR: Sets mail settings.
See the chapter on project parameters for more information. The available options
are documented in chapter "Send Export Results via E-Mail". Additionally, the control
supports the following options:

Print.NoProgressDlg: Can be used to suppress the progress dialog during printing.

Value Meaning

0 The progress dialog is displayed during printing.

1 The progress dialog is suppressed.

Default 0

3.9.5 Events

BtnPress

Syntax:

BtnPress(short nID): BOOL

Task:

Tells you that a toolbar button has been pressed.

Parameter:

nID: See MENUID.TXT for valid IDs

Return value:

TRUE if the action should not be performed by the OCX.

The Viewer OCX Control

67

PageChanged

Syntax:

PageChanged

Task:

Tells you that the current page has been changed.

Parameter:

-

Return value:

-

LoadFinished

Syntax:

LoadFinished(BOOL bSuccessful)

Task:

Notifies you that the file is on the local disk. Important in case of
asynchronous download.

This does not guarantee that the downloaded file is correct - you should use
the property 'pages' to check: a value of 0 indicates a failure.

Parameter:

bSuccess: TRUE if the file has been transferred; FALSE if the download failed

Return value:

-

3.9.6 Visual C++ Hint

Visual C++ (at least V 5.0) notifies you with an "Assertion Failed" message in
occcont.cpp that something is incorrect. This assertion is only in the debug build and
results from the ATL library we used for this control.

3.9.7 CAB Files Packaging

A CAB file is supplied with List & Label.

3.9.8 Inserting the OCX Into Your Internet Page

As stated above, the control can be inserted into an Internet page. Properties can be
set via <PARAM> tag or scripts. Take a look at l20vdemo.htm.

Programming With the OCX Component

68

3.10 The Designer OCX Control

3.10.1 Overview

With the control cmll20id.ocx the Designer is available as an OCX control. Please
note that you can't use any Designer extensions (e.g. custom functions) with this
Designer control. Due to its implementation, currently only single file projects are
supported. Also, to save bandwidth only one record per table is transferred. Amongst
others (e.g. no ribbon support), the following restrictions apply for the
DesignerControl:

• no support for templates

• no support for drilldown

• drawings, PDF documents etc. need to be embedded into the project file
(forced automatically by the UI)

• no real data preview in the Designer

3.10.2 Registration

The control can be registered in the usual way with the command "REGSVR32
CMLL20ID.OCX" or by the programming environment. The dependent modules have
to be registered before the registration.

Often your setup program will make the registration.

For developing with the .NET framework for ASP.NET, a separate control
(DesignerControl) in the combit.ListLabel20.Web namespace is available.

3.10.3 Properties

DataStructureUrl [in, out] BSTR: This property defines the URL of a file that
contains the information about the declared variables/fields. This file is created with
the function LlJobStateSave. This property must be declared. Default: <empty>.

ProjectFileUrl [in, out] BSTR: This property defines the URL of the project file. This
value must be declared. Default: <empty>.

ProjectType [in, out] LONG: This property defines the project type.

Value Meaning

1 LL_PROJECT_LABEL

2 LL_PROJECT_LIST

3 LL_PROJECT_CARD

Default 2

The Designer OCX Control

69

UploadProjectFileUrl [in, out] BSTR: This property defines the URL that is used for
uploading the project file. If this property is not set, the upload of the project file will
be done by ProjectFileUrl. Default: <empty>.

UploadOnSave [in, out] BOOL: This property defines if an upload should be made
right after saving in the Designer. Default: TRUE.

UploadType [in, out] LONG: This property defines which upload method should be
used. A HTML page in UploadProjectFileUrl is expected when using HTTP POST that
can receive the upload.

Value Meaning

1 HTTP POST

2 HTTP PUT

Default 1

UploadRequiresAuthentication [in, out] BOOL: This property defines if the input of
user name and password should be done when uploading. The data will only be
queried for this session. Usually that makes only sense with HTTP PUT. Default:
FALSE.

3.10.4 Methods

Save: Saves the current project file.

3.10.5 CAB Files Packaging

A separate CAB file for each license type can be found online under:

http://www.combit.net/de/products/ll/l20ddemo/ent/cmll20id.cab

and

http://www.combit.net/de/products/ll/l20ddemo/stdpro/cmll20id.cab

3.10.6 Inserting the OCX Into Your Internet Page

As aforementioned the control can be placed on an internet page. The properties can
be managed by the <PARAM> tags; however you can also access the control with
script languages.

<object id="InplaceDesigner" classid="CLSID:438BF0A4-E7B0-4119-ABAC-
933505CC6760"
codebase="http://www.combit.net/de/products/ll/l20ddemo/stdpro/cmll20id.cab">
…
 <param name="UploadType" value="2" />
…
</object>

Programming With the VCL Component

70

4. Programming With the VCL Component

In parallel with the OCX component and .NET assembly, List & Label includes the
VCL component(s) for integration into the IDE from Embarcadero. The following
section exclusively discusses working with this component. If you do not work with
the VCL component, you can skip this section.

4.1 Integration of the Component
The component is integrated using a package. If you are using a version of Delphi
earlier than version 6, use the package ListLabel20PreDelphi6.dpk. For Delphi
versions 6 and higher, use the package ListLabel20.dpk. You will find both files in
your List & Label installation directory under "..\Programmable Samples and
Declarations\Delphi". For more information on installing the packages in your IDE,
refer to the online help documentation for your development environment.

After installing the package, several icons are automatically created in the component
area of the toolbar.

Now you can begin customizing List & Label to suit your needs by configuring the
available properties and implementing the required programming logic. There are
three different ways to do this:

 Data binding

 The simple print and design methods

 A separate, iterative print loop

The first two options are described below. The iterative approach is for the most part
the same as the direct use of the DLL and is thus covered by the general description
of the List & Label API.

4.2 Data Binding
An extra control exists for data binding using the List & Label VCL component. This
control inherits all of the properties from the "normal" component and adds options
for direct data binding. Using the DataSource property, you can now specify a data
source of the type TDataSource.

4.2.1 Binding List & Label to a Data Source

The data binding is performed with the DataSource property. You can either program
in the assignment of these or use the Properties window in your IDE. If you have
already created a DataSource in your form, you can select it from the Properties
window. The necessary link is created automatically.

You can now implement the program code for starting the design and print. To do
this, you can, for example, include the Print or Design method call in the Click event

Data Binding

71

of a new button, without any additional parameters. The data from the assigned
source can be made available automatically.

// Show Designer
DBL20_1.AutoDesign('Invoice');

// Execute print
DBL20_1.AutoPrint('Invoice','');

If you want to modify the standard flow of data-bound printing, there are several
properties you can use. These begin with "Auto..." and are found in the data section
of the Properties window.

Property Description

AutoProjectFile File name of the print project being used

AutoDestination Print format, for example printer, preview, PDF, HTML etc.

AutoProjectType Type of print project (list, index cards, label)

AutoFileAlsoNew Creating a new project when opening Designer enabled

AutoShowPrintOptions Show print options when starting print

AutoShowSelectFile Show the file selection dialog for printing and Designer

AutoBoxType Type of progress box

4.2.2 Working With Master Detail Records

In conjunction with data binding and list projects, List & Label can automatically
analyze and transfer relationships existing between multiple tables.

The type of data transfer is defined using the AutoMasterMode property. The
underlying enumeration provides for the following values:

 None: No master-detail relations are analyzed.

 AsFields: Master and detail data are registered in parallel as fields. This makes it
possible to realize groups, statistics and overviews.

 AsVariables: The master data is registered in the form of variables and the detail
data in the form of fields, respectively. After each master data set, the project is
reset internally with LlPrintResetProjectState(). This makes it possible to use a
single print job for printing in a row several identical reports containing different
data, for example, multiple invoices.

Please also note the examples included for data binding.

Programming With the VCL Component

72

4.2.3 Additional Options for Data Binding

There are four different events you can use for influencing the process for data
binding of the component. The table provides an overview:

Event Description

AutoDefineNewPage The event is invoked for each new page and allows
additional variables to be registered for this page. The
property IsDesignMode of the event arguments indicates
whether design mode is being used.

AutoDefineNewLine This event is invoked for each new line, before the data-
bound fields are registered automatically. In the same
was as you do with AutoDefineNewPage, you can
register additional fields here.

AutoDefineVariable This event is invoked for each variable that is
automatically created using data binding. Using the
Name and Value properties of the event arguments, you
can manipulate the names and content of each individual
variable before passing it for printing.

AutoDefineField Analogous to AutoDefineVariable for fields

AutoDefineTable This event is invoked for each table that has been
registered via LlDbAddTable(). For example, you can
change the name or suppress passing.

AutoDefineTableSortOrder This event is invoked for each sort order that has been
registered via LlDbAddTableSortOrder(). For example, you
can change the name or suppress passing.

AutoDefineTableRelation This event is invoked for each DataRelation that has been
registered via LlDbAddTableRelation(). For example, you
can change the name or suppress passing.

Please note that when using these events you must cast the sender object to the

respective component types if you want to work with the triggering component

instance. Otherwise, you may encounter problems with DrillDown or the preview

in the Designer.

Example:

procedure TForm1.DBL20_1AutoDefineNewPage(Sender: TObject;
 IsDesignMode: Boolean);
begin
 (sender as TDBL20_).LlDefineVariable('MyCustomVariableName',
'MyCustomVariableValue');
end;

Simple Print and Design Methods

73

4.3 Simple Print and Design Methods

4.3.1 Working Principle

The methods implement a standardized print loop that can be used directly for most
of the simpler applications if you do not pass the data via DataBinding. In the case of
this method, the data is passed within the events DefineVariables and DefineFields
to List & Label. This allows any data source to be connected individually. The event
arguments allow access to useful information such as user data that has been
copied, the Design mode etc. The property IsLastRecord is used to notify the print
loop that the last data record has been reached. As long as this is not the case, each
event is invoked repeatedly in order to retrieve the data.

The Design method shows the Designer in a modal pop-up window on top of your
application window.

You can specify additional options in the LLSetPrintOptions event. Internally, this
event is triggered after invoking LlPrintWithBoxStart() but before the actual printing.

One very simple implementation of the Print method looks like this:

Delphi:

procedure TForm1.LLDefineVariables(Sender: TObject; UserData: Integer;
 IsDesignMode: Boolean; var Percentage: Integer;
 var IsLastRecord: Boolean; var EventResult: Integer);
var
 i: integer;
begin
 For i:= 0 to (DataSource.FieldCount-1) do
 begin
 LL.LlDefineVariableFromTField(DataSource.Fields[i]);
 end;
 if not IsDesignMode then
 begin
 Percentage:=Round(DataSource.RecNo/DataSource.RecordCount*100);
 DataSource.Next;
 if DataSource.EOF=True then IsLastRecord:=true;
 end;
end;

4.3.2 Using the UserData Parameter

The Print and Design methods allow a UserData parameter of the type "integer" to be
passed. This parameter makes it possible to prepare various data in the event for List
& Label. For example, using the parameter, it would be possible to provide data for
invoice printing as well as for a list of customers.

Programming With the VCL Component

74

4.4 Transferring Unbound Variables and Fields
Transferring variables and fields follows the regular List & Label principle. Three "API
variations" can be used for the registration.

API Description

LlDefineVariable() Defines a variable of the type LL_TEXT and its content.

LlDefineVariableExt() As described above; additionally can be transferred
along with the List & Label data type.

LlDefineVariableExtHandle() As described above, except that the content must now
be a handle.

One example in which a "text" type variable is registered looks like this:

LL.LlDefineVariableExt('MyVariable', 'Content', LL_TEXT);

You can find the constants for the List & Label data types in the cmbtll20.pas unit
located in your List & Label installation directory.

4.4.1 Pictures

To transfer pictures files saved on your system, use

LL.LlDefineVariableExt ('Picture', <data path>, LL_DRAWING);

Graphics in the memory (only for BMP, EMF) are transferred with the API
LlDefineVariableExtHandle(). For example, to display the graphic as a bitmap or
metafile, use the following call:

LL.LlDefineVariableExtHandle('Picture', BufferImage.picture.bitmap.handle,
LL_DRAWING_HBITMAP);

or

LL.LlDefineVariableExtHandle('Picture', BufferImage.picture.metafile.handle,
LL_DRAWING_HEMETA);

4.4.2 Barcodes

Barcodes are transferred by using the constant LL_BARCODE.... One example in
which an EAN13-type barcode variable is registered looks like this:

LL.LlDefineVariableExt('EAN13', '123456789012',LL_BARCODE_EAN13);

Language Selection

75

4.5 Language Selection
The List & Label Designer is available in numerous languages. Thus, the component
provides full-scale support in the implementation of multilingual desktop applications.
There are two ways for telling List & Label which language to use:

1. Assigning the Language property the appropriate language:

LL.Language = ltEnglish;

2. Set the language directly in the component.

Note: You need the appropriate language kit in order to display the respective

language. For a list of the kits currently available, please visit our online shop at

www.combit.net/en.

4.6 Working With Events
List & Label offers a variety of callbacks, which have been implemented as events in
the List & Label VCL component.

For a detailed description of the available events, please refer the online help
included with the VCL component.

4.7 Displaying a Preview File
A VCL preview control is provided for the VCL. This provides special ways to use the
List & Label preview format. For example, you can start a PDF export from the
control. You can also customize the control to meet your specific needs by
displaying/hiding the toolbar buttons with the properties of the control. It is also
possible to respond to the click events of the buttons and store any separate
handling routines that may be necessary.

4.8 Working With Preview Files
The List & Label Storage API allows access to the LL preview files. You can query
general information or the specific pages, merge several files and save user data. To
use the Storage API, you have to integrate the unit cmbtls20.pas into your project.

4.8.1 Opening a Preview File

You can open the preview file with the LlStgsysStorageOpen() function. General
information about the file can now be accessed using a whole series of other
functions.

Delphi:

var
 hStg: HLLSTG;
begin

Programming With the VCL Component

76

 hStg := LlStgsysStorageOpen('c:\test.ll','',False, False)
end;

4.8.2 Merging Multiple Preview Files

You can merge multiple preview files. To do this, you must first open the target file.
Since write access is required, you must pass a "false" value for the second
parameter, ReadOnly. Using the LlStgSysAppend() function you can then merge the
files.

Delphi:

var
 hStgOrg, hStgAppend: HLLSTG;
begin
 hStgOrg := LlStgsysStorageOpen('c:\test1.ll','',False, True);
 hStgAppend := LlStgsysStorageOpen('c:\test2.ll','',False, True);
 LlStgsysAppend(hStgOrg, hStgAppend);
 LlStgsysStorageClose(hStgOrg);
 LlStgsysStorageClose(hStgAppend);
end;

4.8.3 Debugging

The debugging of the VCL component allows you to either directly activate the
component by setting the property DebugMode to "1" or alternatively in the source
code. For example:

LL.DebugMode := LL_DEBUG_CMBTLL;

For more information about the Debwin debugging tool, please refer to the chapter
"Debug Tool Debwin".

4.9 Extending the Designer
List & Label offers a variety of options for extending the Designer. These include,
among other things, the various events of the component such as a menu operation
and the various features that are available. Yet there are numerous other possibilities.

4.9.1 Using the Formula Wizard to Add Your Own Functions

The formula wizard and its features are among the most important and powerful
capabilities of Designer. Using a special List & Label component for the VCL, you can
also integrate fully customized functions into Designer.

Extending the Designer

77

To add a new function, insert this component on a form in the development
environment. You can now set the necessary parameters in the Properties window of
this component:

Property Description

Name The unique name of the designer function.

Description An additional description of the function for the formula wizard.

GroupName The group in which the function is displayed in the formula
wizard.

Visible Indicates whether or not the function will be displayed in the
wizard.

MinimumParameters The minimum number of parameters. Permissible values
between 0 and 4.

MaximumParameters The maximum number of parameters. Here too, permissible
values between 0 and 4. The value must be equal to or greater
than the minimum number. Increasing the number results in
optional parameters.

Parameter1 – 4 The configuration for each of the four parameters can be
customized.

 Type The data type of the parameter.

 Description A description of the parameter for the tooltip help in Designer.

ResultType The data type of the return value.

Programming With the VCL Component

78

Using the properties, you can customize the configuration of the new Designer
function. In order to bring the function to life, you have to handle the event
OnEvaluateFunction. Using the event arguments, you gain access to the parameters
entered by the user. For example, to return the Roman numeral, use the following
lines:

Delphi:

procedure TDesExtForm.RomanNumberEvaluateFunction(Sender: TObject;
 var ResultType: TLl20XFunctionParameterType;
 var ResultValue: OleVariant;
 var DecimalPositions: Integer; const ParameterCount: Integer;
 const Parameter1, Parameter2, Parameter3, Parameter4: OleVariant);
begin
 ResultValue:=ToRoman(Parameter1);
end;

Two additional events also give you the option to further modify the function.
OnCheckFunctionSyntax lets you perform a syntax check. Here you can check the
data types of the parameters and, for example, make sure the parameters fall within
a certain range. Using OnParameterAutoComplete you can define several suggested
values for the AutoComplete feature of the formula wizard.

4.9.2 Adding Your Own Objects to the Designer

Similar to the way you add functions to Designer, you can also define your own
object types and register them in List & Label. The user can access the new objects
in the usual way on the left toolbar and menu.

Extending the Designer

79

Here there is also a special component for adding objects:

After adding this component to your form, you can define the properties of the new
object in the Properties window of the component. The table provides an overview:

Property Description

Name The unique name of the object.

Description This description appears in the Designer. It is allowed to contain
spaces but should not be more than 30 characters long.

Icon The icon of the object that will be shown in the toolbar and menu
in the Designer. It should be a 16x16 pixel icon.

The component has three types of events. First, the OnInitialCreation event is
triggered when the user creates a new object. If desired, you can have an initial
dialog appear on the user's screen. For example, this can be a wizard that helps the
user to more easily configure the new object. If it is not necessary to use this in a
particular case, simply skip handling the event.

The following lines initialize the object as soon as the new object is placed on the
workspace for the first time.

Delphi:

procedure TDesExtForm.GradientFillObjectInitialCreation(Sender: TObject;
 ParentHandle: Cardinal);
begin

Programming With the VCL Component

80

 with Sender as TLl20XObject do
 begin
 Properties.AddProperty('Color1', '255');
 Properties.AddProperty('Color2', '65280');
 end;
end;

The OnEdit event is triggered when the user double-clicks the newly inserted object
or selects "Properties" from the context menu.

After you are finished editing the object, you are prompted by List & Label to show
the object. The OnDraw event is triggered for this purpose. The event arguments are
responsible for generating the TCanvas as well as a TRect for the object. Using the
usual methods, you can now draw in the workspace. Here, of course, it is also
possible or useful to access the stored object properties.

Programming Interface

81

5. Programming Using the API

Besides reading this chapter we recommend to have a look at the source code
samples that are provided with List & Label for various programming languages to
get started quickly. You will find them in the "Examples" folder in the List & Label start
menu. Declaration files for many programming languages are additionally available in
order to ease the integration of List & Label, even if there are no samples available. In
this case, a look at the samples for other programming labguages might help to set
up the neccessary code.

The source code snippets in this chapter are using C/C++ as programming
languages, but the syntax should be easily adaptable to other languages, too.

5.1 Programming Interface

5.1.1 Dynamic Link Libraries

Basics

A DLL (Dynamic Link Library) is a collection of routines in a file which is loaded on
demand by the Windows kernel.

The DLL principle allows the routines (procedures) contained within it to be "bound"
(linked) to the executable at the time the application is run. Furthermore, several
applications can use the DLL routines without requiring multiple copies to be
installed on the system.

Of course, procedures of one DLL can also call procedures of other DLLs, as is
regularly done by Windows.

List & Label uses different DLLs for specific jobs.

Usage of a DLL

Because of this method of linking, Windows has to be able to find and load the DLL
file. To be accessible, the DLL has to be placed either in the path where the calling
application is, the directory of Windows or its system path, or in any path contained
in the system search path.

The same is valid for the DLLs List & Label uses.

These DLLs must be copied into a path in which your program is installed, or which
complies with the requirements stated above.

The List & Label DLL and its dependent DLLs can be installed for Side-By-Side use in
your application's directory.

For compatibility reasons concerning Windows 7 and Windows 8, no files should be
placed in the Windows directory.

Programming Using the API

82

See chapter "Redistribution: Shipping the Application" for further information.

Linking With Import Libraries

To use the API functions, your source code must include a declaration file for
cmll20.dll (C++: cmbtll20.h), which needs to be done after the "#include
<windows.h>" statement resp. the precompiled header file, as Windows data types
are used in the declarations. Additionally you need to link the corresponding LIB file
(C++: cmll20.lib). In order to use the API for managing preview files (see chapter
"Managing Preview Files") you need to include the declaration file for cmsl20.dll
(C++: cmbtls20.h) and if neccessary link to the corresponding LIB file (C++:
cmsl20.lib).

Dynamic loading of the DLLs is also possible – you will find a description in the
online knowledge base under http://support.combit.net.

Important Remarks on the Function Parameters of DLLs

Returning strings from the DLL to the application is always performed by returning a
pointer to a memory area and, as a further parameter, an integer value for the length.
The buffer size (in characters) must be passed so that buffer overflows are
impossible. The string is always \0-terminated. If, for example, the buffer is too short,
the returned string will be shortened and may result in incomplete return values. This
is indicated by the API function's return value. LL_ERR_BUFFERTOOSMALL will be
returned in these cases.

The parameters are checked for correctness as far as possible. While developing a
program it is therefore worth switching on the debug mode (see LlSetDebug()) and
checking the return values. You can switch off the parameter check later using
LL_OPTION_NOPARAMETERCHECK.

Please note that with Delphi the routines require "\0"-terminated strings just like the
Windows API functions. It may be necessary to use the Pascal-string to C-string
conversion routines.

With Visual Basic, it may in some cases be necessary to remove the '\0'-termination.
Parameters are passed with ByVal. It is recommended that you initialize
buffer/strings with…

Dim lpszBuffer As String * 255

to a specific size (here 255 bytes). This is also possible using…

lpszBuffer$ = space$(255)

but requires more time and memory. It is important to reserve the memory so that
the DLL does not write in unused areas - an unhandled exception would be the result
otherwise.

In addition, it must be noted that some functions cannot be supported with Visual
Basic; these are, however, not normally required. You can find out which functions
these are in the corresponding chapters. If a parameter value is NULL (C) or nil

http://support.combit.net/en

Programming Basics

83

(Pascal), you should use "" (empty string) or 0 as value in Visual Basic, depending on
the data type of the parameter. The OCX control does not need ANSIZ buffers, as it
supports the native String data types.

Please note with C or C++ the C convention in source texts of having to enter, for
example, the '\' in path entries twice: "c:\\temp.lbl" instead of "c:\temp.lbl".

Example:

INT nSize = 16000;
LPWSTR pszBuffer = new TCHAR[nSize];
INT nResult = <API>(hJob,...,pszBuffer,nSize);

if (nResult == LL_ERR_BUFFERTOOSMALL)
 {
 nSize = <API>(hJob,...,NULL,0);

 ASSERT(nSize > 0);
 delete[] pszBuffer;
 pszBuffer = new TCHAR[nSize];
 nResult = <API>(hJob,...,pszBuffer,nSize);
 }

...

delete[] pszBuffer;

5.1.2 General Notes About the Return Value

• Zero (or with some functions a positive return value) generally means that the
function was successful, though there are some exceptions to this rule.

• A negative return value, apart from exceptional cases, indicates an error, which
shows the reason with the corresponding error constants.

5.2 Programming Basics
This chapter should provide a quick and easy start into programming List & Label.
Thus, only the programming basics will be covered. For a look at more advanced
topics, please read the corresponding chapters later on.

5.2.1 Database Independent Concept

List & Label works database-independently when being programmed via the API,
meaning List & Label does not access the database itself and does not have its own
database drivers. This offers you an enormous number of advantages.

The advantages:

• No unnecessary overheads due to duplicate database drivers, resulting in less
memory consumption so that your application can run faster.

Programming Using the API

84

• Less risk of problems with additional database drivers.

• More flexible, as this allows data control in one place only.

• Can be used without any database.

• Allows access to exotic databases.

• You can mix database data and "virtual" data created by your program.

• The data can be manipulated before printing.

The disadvantage:

• You really have to write some code. List & Label needs to be fed with data. This is
very simple and needs little coding in standard cases.

5.2.2 The List & Label Job

To enable List & Label to distinguish between the different applications that are
printing with it, a so-called job management is necessary: each application using a
functionality of List & Label (print, design etc.) has to open a job first
(LlJobOpen(),LlJobOpenLCID()) and pass the returned job handle as parameter to
(nearly) all following calls of List & Label functions.

If you develop using one of the enclosed components, the job management is
handled automatically by the control. For this reason, the job handle parameter must
be omitted in calls of functions of these components.

HLLJOB hJob = LlJobOpen(CMBTLANG_ENGLISH);
...
LlDefineVariable(hJob, "Firstname", "George");
LlDefineVariable(hJob, "Lastname", "Smith");
...

5.2.3 Variables, Fields and Data Types

The delivery and definition of variables and their contents is performed with the List &
Label function LlDefineVariable(Ext)(), the delivery and definition of fields and their
contents is performed with the List & Label function LlDefineField(Ext)(). Regarding
the names of fields and variables please refer to the section "Hints on Variable and
Field Names".

List & Label allows the specification of the following variable and field types. As the
APIs expect string parameters to be passed, you may need to convert the actual
values to strings before passing them to List & Label.

Please note the hints regarding NULL values in section "Passing NULL Values".

HLLJOB hJob = LlJobOpen(CMBTLANG_ENGLISH);
...
LlDefineVariable(hJob, "Firstname", "George");

Programming Basics

85

LlDefineVariable(hJob, "Lastname", "Smith");
LlDefineVariableExt(hJob, "ISBN", "40|15589|97531", LL_BARCODE_EAN13, NULL);
LlDefineVariableExt (hJob, "Photo", "c:\\dwg\\test.bmp", LL_DRAWING, NULL);
...

Text

Constant:

LL_TEXT

Content e.g.:

"abcdefg"

Hints:

The text can contain special characters to handle word wraps. These
characters are:

Value Meaning

LL_CHAR_NEWLINE, 0x0d,
0x0a

Text object: Becomes a blank, if "word
wrapping" is not activated in the Designer.
Table field: Wrap is forced:
"This will"+chr$(LL_CHAR_NEWLINE) +"be
wrapped"

LL_CHAR_-
PHANTOMSPACE

The character is ignored, if no wrapping is
chosen in the Designer. In this way, other
characters can be assigned to a wrap:
"This is a word-
"+chr$(LL_CHAR_PHANTOMSPACE)+"wrap
" is wrapped when needed.

LL_CHAR_LOCK Is put in front of tabs or blanks and means
that no wrapping may occur:
"Not"+chr$(LL_CHAR_LOCK)+" here please"

The codes of these characters can be changed with LL_OPTION_xxx-
REPRESENTATIONCODE.

Numeric

Constant:

LL_NUMERIC

Content e.g.:

"3.1415", "2.5e3"

Programming Using the API

86

Hint:

Exponential syntax is allowed (2.5e3 equals 2.5*10
3
). A thousands separator

(as in "1,420,000.00") is not allowed.

Constant:

LL_NUMERIC_LOCALIZED

Content e.g.:

"1,255.00"

Hint:

The number is interpreted as a localized number, i.e. as a number formatted
according to the local format settings. The OLE-API VarR8FromStr() is used
internally.

Constant:

LL_NUMERIC_INTEGER

Content e.g.:

""5""

Hint:

Provides an integer value. The usage of integer values has a better
performance in calculations. They will be displayed and printed without
decimals.

Date

Constant:

LL_DATE

Content e.g.:

"2451158.5" (equals 12/11/1998 noon) or "5-1-2013" for LL_DATE_MDY format
or "20130501" for LL_DATE_YYYYMMDD format

Hint:

Date values are usually expected in the Julian format. The Julian date
specifies a certain date by giving the number of days that have passed since
January, 1st -4713. The decimals represent the fraction of a day, which may be
used to calculate hours, minutes and seconds.

Many programming languages also have a special data type for date values.
The representation is usually analogous to the Julian date, however a different
start day is often used. This means that in this case an offset has to be added.
To avoid this, at least for the languages Visual Basic, Visual FoxPro and Delphi,
List & Label knows the following special date variants:

Programming Basics

87

LL_DATE_OLE, LL_DATE_MS, LL_DATE_DELPHI_1, LL_DATE_DELPHI,
LL_DATE_VFOXPRO

To make passing dates easier, there are some formats that do not require a
Julian format:

LL_DATE_DMY, LL_DATE_MDY, LL_DATE_YMD, LL_DATE_YYYYMMDD.

With these, the value of a date variable can be passed directly as a string to
List & Label, there is no need for your program to convert it to the Julian date -
List & Label performs this task for you.

The day, month and year numbers must be separated by a dot ('.'), slash ('/') or
minus sign ('-') in the first three formats.

Constant:

LL_DATE_LOCALIZED

Hint:

The date is interpreted as localized date, e.g. "12/31/2013". The OLE-API
VarDateFromStr() is used internally.

Boolean

Constant:

LL_BOOLEAN

Content e.g.:

"T"

Hint:

"T","Y","J","t","y","j","1" all represent "true", all other values represent "false".

RTF Formatted Text

Constant:

LL_RTF

Content e.g.:

"{\rtf1\ansi[...]Hello {\b World}!\par}"

Hint:

The variable content must start with "{\rtf" and contain RTF-formatted text.

Programming Using the API

88

Important: The rendering of RTF contents in variables and fields is optimized
for contents created with Microsoft's RTF control. These can be generated
e.g. by using the Windows Wordpad application. Contents generated by
Microsoft Word may not conform to the Windows RTF control's RTF standard
and should not be used.

HTML Formatted Text

Constant:

LL_HTML

Content e.g.:

"<html><body>Hello World</body></html>"

Hint:

List & Label uses a custom component for HTML rendering. This component
supports a restricted CSS subset. The correct rendering of entire web pages
is not the main intent – the component rather offers a quick and easy way to
render simple HTML streams.

Drawing

Constant:

LL_DRAWING

Content e.g.:

"c:\temp\sunny.jpg"

Hint:

The variable content represents the name of a graphics file (C/C++-
programmers note: use a double "\\" with path specifications)

Constant:

LL_DRAWING_HMETA, LL_DRAWING_HEMETA, LL_DRAWING_HBITMAP,
LL_DRAWING_HICON

Hint:

Variable content is a handle to a graphic of the respective type in the memory
(can only be defined using LlDefineVariableExtHandle() or
LlDefineFieldExtHandle())

Invoking the Designer

89

Barcode

Constant:

LL_BARCODE

Contents:

"Barcode Text"

Hint:

The variable contents are the text to be printed in the barcode. The format and
character range of the barcodes are described in the online help.

Constant:

All constants starting with LL_BARCODE_...

User Object

Constant:

LL_DRAWING_USEROBJ, LL_DRAWING_USEROBJ_DLG

Hint:

This object is drawn by the application itself in a callback/event procedure. For
LL_DRAWING_USEROBJ_DLG the programmer can supply a custom
properties dialog for the object available in the Designer.

The use of this variable type is a more advanced topic and is described later in
this manual.

5.3 Invoking the Designer

5.3.1 Basic Scheme

In pseudo code, calling the Designer is done as follows (functions marked with '*' are
optional calls):

<open Job>
 (LlJobOpen, LlJobOpenLCID)
<define List & Label-settings>*
 (LlSetOption,
 LlSetOptionString,
 LlSetDebug,
 LlSetFileExtensions,
 LlSetNotificationMessage,
 LlSetNotificationCallback)
<which file?>*
 (LlSelectFileDlgTitleEx)
<define variables>

Programming Using the API

90

 (LlDefineVariableStart,
 LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<define fields>* (only LL_PROJECT_LIST)
 (LlDefineFieldStart,
 LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
<disable functions>*
 (LlDesignerProhibitAction,
 LlDesignerProhibitFunction)
<call designer>
 (LlDefineLayout)
<close Job>
 (LlJobClose)

It is sufficient for job management to get the job at the beginning of the program and
to release it at the end; this job is then used both for Designer calls and printing.
Normally a job handle can be retained for the whole lifetime of the application, so
that it only has to be released at the end.

We recommend making global settings valid for all List & Label calls after
LlJobOpen()/LlJobOpenLCID() and making local settings such as disabling menu
items directly before calling the Designer or printing.

5.3.2 Annotations

If setting of certain options is required, then this must of course be done before
calling the Designer.

Normally the user is asked (by a file selection dialog) which file he would like to
process. Let's assume in our example that a label is to be processed:

It is important that the buffer receiving the filename is pre-initialized - either to an
empty string (""), or to a file name suggestion (which also sets the path!):

TCHAR aczProjectFile [_MAX_PATH];
_tcscpy(aczProjectFile,"c:\\mylabel.lbl");
LlSelectFileDlgTitle(hJob, hWindow, "Choose label", LL_PROJECT_LABEL,
 aczProjectFile, _MAX_PATH, NULL);

Of course this can also be done with an individual dialog box, or a file name can be
passed to the Designer directly if the user should not be given the option of
choosing.

List & Label must be informed of the possible variables in order to make them
available to the user during design time or print time. Otherwise, the user could only
use fixed text in the object definitions.

Invoking the Designer

91

First of all the variable buffer is cleared (in case variables have been previously
defined. The call is also recommended to make sure that the variable buffer is empty,
and no variables remain from the previous print job that might be meaningless in this
next task):

LlDefineVariableStart(hJob);

Now the variables can be declared in various ways. If the Designer knows sample
data for a variable, then these are used instead of the variable name in the preview
window in order to guarantee a more realistic preview display.

LlDefineVariable(hJob, "forename", "George")
LlDefineVariable(hJob, "lastname", "Smith");

And so the expression
 'forename +" "+lastname'
is transformed to
 'George Smith'

If list objects are also required - in a 'report' or list project (LL_PROJECT_LIST) - then
the programmer must also make the necessary fields available. This is done
analogously to the above (barcode fields and drawings are also possible table
columns), except that the function names contain "Field" instead of "Variable":

LlDefineFieldStart(hJob);
LlDefineField(hJob, "book");
LlDefineField(hJob, "ISBN");
LlDefineFieldExt(hJob, "ISBN", "40|15589|97531", LL_BARCODE_EAN13, NULL);
LlDefineFieldExt(hJob, "photo", "c:\\dwg\\test.bmp", LL_DRAWING, NULL);

Before calling LlDefineLayout(), menu items can be deleted by
LlDesignerProhibitAction() or blocked so that the Designer cannot be minimized. The
latter can be done by calling:

LlDesignerProhibitAction(hJob, LL_SYSCOMMAND_MINIMIZE);

Now everything has been defined sufficiently for the user to edit his project and the
Designer can be started:

LlDefineLayout(hJob, hWindow, "test title", LL_PROJECT_LABEL, test");

For a list, change the constant to LL_PROJECT_LIST, or for a file card project to LL_-
PROJECT_CARD.

Please note that in the Designer you will generally see the data of only one record
(multiple times) in the Designer. It is possible to provide a real data preview in the
designer. See chapter "This chapter is only required if you're not working with one of
the components (.NET/VCL/OCX). If you're using one of these components, you may
skip this chapter.

Programming Using the API

92

Direct Print and Export From the Designer" for further information.

Checking for error codes is generally recommended.

5.4 The Print Process

5.4.1 Supplying Data

List & Label also works database-independently in this mode. This means that the
application is (i.e. you as a programmer are) responsible for supplying the data. You
tell List & Label, by calling a function, which data (fields) are available in your
application (e.g. "A Field called <Name>, a field called <Lastname> etc.") and which
content this field should have. Where you get the data from at print time is totally
irrelevant for List & Label. In most cases you probably perform a read access to a
record field in a database.

To integrate the Designer into your application, you need to tell List & Label about the
available data fields by calling a function for each of your data fields that may be
placed in the form. With this call, you may also optionally declare the field type (e.g.
text, numeric, boolean, date etc.) to List & Label, which is e.g. relevant for the correct
treatment of your fields and variables in formulas within the Designer. You may pass
a sample content for each field, which is used during the design in the layout
preview. If you want to support the real data preview in the Designer, please follow
the instructions in chapter "This chapter is only required if you're not working with
one of the components (.NET/VCL/OCX). If you're using one of these components,
you may skip this chapter.

Direct Print and Export From the Designer".

During printing, the passing of data works analogously, apart from the fact that you
have to supply the real data content instead of the sample content. This has to be
done for all fields used, while you are iterating all records you want to print out.

5.4.2 Real Data Preview or Print?

In principle the printing loop always looks the same, whether you print to preview
(LL_PRINT_PREVIEW), printer (LL_PRINT_NORMAL) or file (LL_PRINT_FILE). The only
difference is a parameter setting at the beginning of the print (see LlPrint[WithBox]-
Start()). You may, however, leave the target choice to the end user
(LL_PRINT_EXPORT) by giving him the option to choose the print target within the
print dialog called by LlPrintOptionsDialog().

5.4.3 Basic Procedure

First of all a List & Label job is opened (LlJobOpen() or LlJobOpenLCID()) and, if
necessary, global List & Label options are set (LlSetOption()). Now List & Label has to
be informed that printing should start (LlPrintWithBoxStart()). With this call, the
project file to be used for printing is passed to List & Label. At this point, the project

The Print Process

93

is opened and parsed by List & Label. During this process a syntax check is
performed on all variables, fields and formulas used. This requires List & Label to
know all variables and fields you are making available to your end users. For this
reason, you must define all variables and fields using the LlDefineVariable() and
LlDefineField() functions before calling LlPrintWithBoxStart().

As only the names and types are important at this point, not the contents, you may
call the same routine you use to define all variables and fields for the Designer (e.g.
with a sample content, or the content of the first record).

A print usually proceeds as follows (functions with '*' are optional calls which are not
necessarily required):

<open Job>
 (LlJobOpen, LlJobOpenLCID)
<define List & Label-settings>*
 (LlSetOption,
 LlSetOptionString,
 LlSetFileExtensions,
 LlSetNotificationMessage,
 LlSetNotificationCallback)
<print> (see below)
<close Job>
 (LlJobClose)

Printing Labels and File Cards

For a label or file card print (LL_PROJECT_LABEL, LL_PROJECT_CARD), the <print>
part looks as follows:

<define all possible variables>
 (LlDefineVariableStart,
 LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<define options>*
 (LlSetPrinterDefaultsDir)
<start print>
 (LlPrintStart,
 LlPrintWithBoxStart)
<define print options>*
 (LlPrintSetOption,
 LlPrintSetOptionString,
 LlPreviewSetTempPath)
<let user change options>*
 (LlPrintOptionsDialog,
 LlPrintOptionsDialogTitle,
 LlPrintSelectOffsetEx,
 [LlPrinterSetup])
<define constant variables>
 (LlDefineVariable,

Programming Using the API

94

 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<get printer info for progress-box>*
 (LlPrintGetOption,
 LlPrintGetOptionString,
 LlPrintGetPrinterInfo)
<skip unwanted labels>*

<print while data left and no error or user abort>
{
 <give progress-status>*
 (LlPrintSetBoxText,
 LlPrintGetCurrentPage,
 LlPrintGetOption)
 <define variables>
 (LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
 <print objects>
 (LlPrint)
 <no warning, no user abort: next data record>
}

<end print>
 (LlPrintEnd)

Printing Lists

And for printing a report (LL_PROJECT_LIST):

<define all possible variables>
 (LlDefineVariableStart,
 LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<define all possible fields>
 (LlDefineFieldStart,
 LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
<define options>*
 (LlSetPrinterDefaultsDir)
<start print>
 (LlPrintStart,
 LlPrintWithBoxStart)
<define options>
 (LlPrintSetOption,
 LlPrintSetOptionString,
 LlSetPrinterDefaultsDir,
 LlPreviewSetTempPath)
<let user change options>*
 (LlPrintOptionsDialog,

The Print Process

95

 LlPrintOptionsDialogTitle,
 LlPrintSelectOffsetEx,
 [LlPrinterSetup])
<define constant variables>
 (LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<print variables> (print all objects)
 LlPrint
<while "page full" warning (LL_WRN_REPEAT_DATA) do>
 LlPrint

<repeat >
{
 <define fields>
 (LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
 <print row>
 (LlPrintFields)
 <while "page full" warning (LL_WRN_REPEAT_DATA) do>
 <define page specific variables>*
 (LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
 <re-print>
 (LlPrint)
 (LlPrintFields)
 <goto next data record>
 <give progress report>*
 (LlPrintSetBoxText,
 LlPrintGetCurrentPage,
 LlPrintGetOption)
}
<until
 -error or
 -no data records left or
 -user abort
>
<Print final footer and all linked objects>
 (LlPrintFieldsEnd)
<while "page full"-warning (LL_WRN_REPEAT_DATA) do>
 (LlPrintFieldsEnd)
<end print>
 (LlPrintEnd)

Programming Using the API

96

5.4.4 Annotations

Starting Print: Reading the Project File

Before the print can be started, it is important to know which project is to be loaded
and which variables are to be made available.

After the optional dialog where the user can choose the project file,
LlSelectFileDlgTitleEx(), all variables which are to be included in this project must be
defined. If List & Label evaluates an expression in which there is an unknown variable,
then it ends the loading process and passes back the corresponding error code. The
definition of variables is programmed in the same way as the definitions before
calling the Designer.

In the case of a list project (LL_PROJECT_LIST), the corresponding fields must also be
defined in order to avoid an error.

Once you have called

LlPrintWithBoxStart(hJob, LL_PROJECT_LABEL, aczProjectFile, LL_PRINT_NORMAL,
 LL_BOXTYPE_BRIDGEMETER, hWindow, "my test");

and no error is returned from this function, List & Label has read the definition of the
project and is ready to print. The printer is, however, not initialized yet - this is done
with the first function call which starts the printing job.

If you want to allow the user to change the print parameters, the corresponding
dialog is called using:

LlPrintOptionsDialog(hJob, hWindow, "Print Parameter");

With LlSetOption() and LlSetOptionString() standard values for that particular printout
can be given, for example

LlPrintSetOption(hJob, LL_OPTION_COPIES, LL_COPIES_HIDE);

suppresses the "copies" query in the print options dialog.

If "Save options permanently" has been checked in the dialog then the chosen printer
setting is saved in a so-called "printer definition file". Initially, the printer and layout is
determined in the Designer (menu: Project > Page Layout). If this file is not found,
then the Windows standard printer is used. Further information on this can be found
in chapter "List & Label Files".

List Projects: Important Things to Note

Variables - in the case of list projects - are values which remain constant for one
page, and fields are the record-dependent data. These are printed using
LlPrintFields().

The Print Process

97

When calling LlPrint() the objects that are not lists are printed, as well as the list
headers (if the option LL_OPTION_DELAYTABLEHEADERLINE is not set, otherwise
the table header will be delayed until the first data line is to be printed). List & Label
then expects the records to be defined.

With every LlPrintFields() it is tested whether the data record to be printed fits onto
the current page. If this is not the case, LL_WRN_REPEAT_DATA is returned, which
indicates that a new page should be started. In this case don't increment the record
pointer.

When the table is full, the variables for the next page must be defined before calling
LlPrint(), as with this LlPrint() any linked objects are printed, the new page is started
and - see above - the objects on the new page including list headers printed.

A forced page break is possible by calling LlPrint() at any time, which ends the
present page if this has already been partially filled.

Copies

"Copies" can mean two different kinds of copies:

a) Copies of labels usually do not mean that multiple pages should be printed, but
the copies should be located on labels next to each other.

To support this, get the number of copies before the first LlPrint() call so that you
know how many copies should be printed of each label, and set the copies for List &
Label to 1, so that List & Label does not use printer copies too.

// user can change the number of copies...:
LlPrintOptionsDialog(hJob,hWnd,"Printing...");

nCopies = LlPrintGetOption(hJob,LL_PRNOPT_COPIES);
LlPrintSetOption(hJob,LL_PRNOPT_COPIES,1);

Then, print the requested number of labels:

for (nCopy = 1; (nCopy < nCopies) && (nError == 0); ++nCopy)
{
 nError = LlPrint(hJob);
 // support AUTOMULTIPAGE (usually memos in file cards)
 while (nError == LL_WRN_REPEAT_DATA)
 nError = LlPrint(hJob);
}

b) True copies of the sheets, that is, identical pages. This kind of copies is directly
handled by List & Label, so no special handling from the developer is necessary.

Speed Optimization

a) Application optimization

Programming Using the API

98

At first, variable definitions which are to be constant during printing, can be pulled
out of the print loop. If you want to always print your company name in the letter
head with lists, it's best to define it outside the loop before LlPrintWithBoxStart().

b) Is the variable / field used?

You can also query which variables or fields are used in the expressions. If the
number of potential variables or fields is much bigger than the actually used number
or getting the data values is complex (sub queries, calculations, etc.) using these
functions is worth it. Calling LlGetUsedIdentifiers() returns all variables and fields
used in the project. LlGetUsedIdentifiersEx() furthermore allows to differentiate
between the type (variable or field).

You should call this function before print start and later only pass the fields or
variables from your data source which will actually be used.

c) Global "Dummy"-job

Some of the system libraries (e.g. riched20.dll) used by List & Label seem to cause
resource losses under certain circumstances. These are very small but incur with
every load and unload of the DLL.

These DLLs are loaded or unloaded by List & Label with every open or close of the
"first" job. Therefore you should avoid a frequent LlJobOpen() / LlJobClose() in your
application or to start a dummy job at start and keep it open until the end. The
permanent loading and unloading of the DLLs is avoided and besides the achieved
speed optimization also the resource losses won't occur anymore.

5.5 Printing Relational Data
List & Label offers a convenient way of designing projects with multiple relationally
linked database tables (hierarchical reports). The report container is also the easiest
way for the user to work with multiple tables, charts crosstabs or charts in table
columns. The rest of this chapter handles working with LL_PROJECT_LIST type
projects. LL_PROJECT_LABEL or LL_PROJECT_CARD type projects support exactly
one table and an arbitrary number of sort orders for this table that can be set and
retrieved just as for LL_PROJECT_LIST projects.

In the following we use "table" as a synonym for a group of matching fields in the List
& Label-Designer or in the "Objects" tool window. You are not restricted to "real"
databases - it is also possible to display a class array or dynamically created data in a
"table", or all member variables of a class. In the List & Label-Designer you will work
with just one "report container object". This object can contain multiple tables,
crosstabs and charts.

Once you have added single tables with LlDbAddTable(), your users can edit the
structure in the "Objects" tool window. You will find further information on how to
design the report container object in the corresponding chapter of the Designer
manual. This chapter focuses on how to control such designs.

Examples of how to use multiple tables for the most common programming
languages are included in the installation.

Printing Relational Data

99

5.5.1 API Functions Needed

The name of the API functions needed to control this functionality begin with LlDb…
or LlPrintDb…. You can add tables (LlDbAddTable()), define sortings for the tables
(LlDbAddTableSortOrder()) and define relations between tables (LlDbAddTable-
Relation()).

At print time you can query the currently active table (LlPrintDbGetCurrentTable()) as
well as the currently active relation and sort order (LlPrintDbGetCurrentTableSort-
Order(), LlPrintDbGetCurrentTableRelation()). You will find detailed descriptions later
in this chapter.

5.5.2 Calling the Designer

First all tables have to be declared to List & Label, so that they can be inserted into
the project:

LlDbAddTable(hJob, "", ""); // delete existing tables
LlDbAddTable(hJob, "Orders", "ORDERS");
LlDbAddTable(hJob, "OrderDetails", "ORDER DETAILS");

The first parameter is the usual job handle of the List & Label job. The second
parameter is the table ID, which will be returned during printout by
LlPrintDbGetCurrentTable(). The third parameter is the display name of the table in
the Designer. If you pass NULL or an empty string, the table ID will be used as
display name as well.

A special role is assigned to the table name "LLStaticTable". This is reserved and can
be used for the insertion of 'static' contents (fixed texts or contents of variables, chart
signatures etc.). This type of static table is then available as "Free content" data
source and can only be filled with data lines by the user in the Designer. You must
react accordingly to the table in your code - a detailed explanation is provided in the
Printing subchapter.

In the next step the relations between the tables will be defined. List & Label does
not directly differ between different types relationships (n:m, 1:n) – you declare a
relation with a relation ID which can be queried at print time:

LlDbAddTableRelation(hJob, "OrderDetails", "Orders",
 "Orders2OrderDetails", NULL);

With this command, you have established a relationship between the child table
"OrderDetails" and the parent table "Orders". In this case only the ID of the relation
was passed and will be displayed in the Designer.

Finally you can pass sort orders for the tables. Again, you define a unique ID for every
sort order that can then be queried at print time:

LlDbAddTableSortOrder(hJob, "Orders", "OrderDate ASC",
 "Order Date [+]");

Programming Using the API

100

LlDbAddTableSortOrder(hJob, "Orders", "OrderDate DESC",
 "Order Date [-]");

This allows the user to choose one of these sort orders (as well as the default
"unsorted") in the Designer. If you use LlDbAddTableEx() to define the tables, you can
also support multiple (stacked) sortings.

The remaining action when calling the Designer is analogous to the "normal" call, i.e.
the complete scheme for calling the Designer with multiple tables looks like this:

<open job>
 (LlJobOpen, LlJobOpenLCID)
<define List & Label-settings>
 (LlSetOption,
 LlSetOptionString,
 LlSetDebug,
 LlSetFileExtensions,
 LlSetNotificationMessage,
 LlSetNotificationCallback)
<which file?>
 LlSelectFileDlgTitleEx
<define data structure>
 (LlDbAddTable,
 LlDbAddTableRelation,
 LlDbAddTableSortOrder)
<define variables>
 (LlDefineVariableStart,
 LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<define fields>
 (LlDefineFieldStart,
 LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
<disable funtions>
 (LlDesignerProhibitAction,
 LlDesignerProhibitFunction)
<call designer>
 (LlDefineLayout)
<close job>
 (LlJobClose)

Make sure that you pass all field names in the form of "<tableid>.<fieldname>" in
order to enable List & Label can connect these to their corresponding table (e.g.
"Orders.OrderID").

If you want to add fields of a 1:1 relation, please refer to chapter "Handling 1:1
Relation".

Printing Relational Data

101

5.5.3 Controlling the Print Engine

The control of hierarchical reports with List & Label occurs more or less analogously
to the print flow in the last chapter. With the function LlPrintDbGetCurrentTable() you
can query which table's values are to be passed – as usual with LlDefineField[Ext]()
and LlPrintFields(). Depending on the layout, there are two specific cases:

• Tables can be consecutive (multiple tables following each other at the same level)

• The user could have added a sub-table to the current table

We will deal with these cases in the next two sections.

Multiple Independent Tables on the Same Level

An example for this would be a list of customers followed by a chart of employees.
Both tables can be independent. The print loop for this looks very similar to the print
loop in the last chapter – with one difference. Usually, you tell List & Label that a table
is finished (no more data) by calling LlPrintFieldsEnd(). Now you may get the return
value LL_WRN_TABLECHANGE, meaning that there is another table to print in the
layout.

We suggest splitting your print loop into different subroutines.

The first part declares the data and the structure, starts the print job and initializes
the first page so that printing of a table can be started. For ease of reading, the
optional part of the print loop is not shown here, as it has already been shown in the
last chapter.

<define data structure>
 (LlDbAddTable,
 LlDbAddTableRelation,
 LlDbAddTableSortOrder)
<define all possible variables>
 (LlDefineVariableStart,
 LlDefineVariable,
 LlDefineVariableExt,
 LlDefineVariableExtHandle)
<define all possible fields>
 (LlDefineFieldStart,
 LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
 LlSetPrinterDefaultsDir
<begin print>
 (LlPrintStart,
 LlPrintWithBoxStart)
<define options>
 (LlPrintSetOption,
 LlPrintSetOptionString,
 LlPreviewSetTempPath)
<define fixed variables>
 (LlDefineVariable,
 LlDefineVariableExt,

Programming Using the API

102

 LlDefineVariableExtHandle)
<print variables> (print all objects)
 (LlPrint)
<as long as warning repeat>
 (LlPrint)

The second part of the print loop needs an auxiliary function. This function prints the
data of a single (database) table

function PrintTable(DataTable Dataobject)
{
 // DataTable is an adequate object for data access, e.g. a
 // table of a database, a class array or similar

 <repeat>
 {
 <define fields of DataTable>
 (LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
 <print line>
 (LlPrintFields)
 <as long as warning repeat >
 (LlPrint,
 LlPrintFields)
 <next data record in DataTable>
 }
 <until last data record in DataTable reached>

 <print footer line>
 (Ret = LlPrintFieldsEnd)
 <as long as warning "page full" repeat>
 (Ret = LlPrintFieldsEnd)
 <result = Ret>
}

The return value specifies whether another table follows (LlPrintFieldsEnd() returns
LL_WRN_TABLECHANGE) or if the print can be finished (return value 0).

With this function, the second part of the print – the part after the initialization of the
first page – can be coded as follows:

<repeat>
{
 <get current table name >
 (LlPrintDbGetCurrentTable)
 <get current sorting>
 (LlPrintDbGetCurrentTableSortOrder)
 <generate a corresponding DataTable object>
 <Ret=PrintTable(DataTable)>
}
<until Ret <> LL_WRN_TABLECHANGE>

Printing Relational Data

103

<finish printout>
 (LlPrintEnd)

If you have declared the "LLStaticTable" table for free contents and LlPrintDbGet-
CurrentTable() provides this table as the current table, your printing loop must react
to it by printing a single data line via LlPrintFields(). In the above example, you could
simply generate a DataTable object with just one data record for the case of
"LLStaticTable", and printing will then automatically run correctly.

This code already allows an arbitrary sequence of multiple tables in series. In the
following chapter, we will expand it to print sub-tables as well.

Simple 1:n Relations

The typical example for this case is the previously discussed 1:n relation order –
order details. After each record with order data, the order details for that data shall
be printed.

The printing of a data line is triggered by LlPrintFields(). Analogously to the behavior
of LlPrintFieldsEnd() in the last section, the function returns LL_WRN_TABLECHANGE
if the user has placed a sub-table, and you then have to respond.

You can ask for the table relation with LlPrintDbGetCurrentRelation() and for the name
of the child table with LlPrintDbGetCurrentTableName(). With this information, you
can invoke the auxiliary function PrintTable() from the last section again. This call
must be placed directly after LlPrintFields() – thus from the function PrintTable() itself.
The function must be changed in order to call itself recursively:

function PrintTable(DataTable data object)
{
 // DataTable is an adequate object for data access, e.g. a
 // table of a database, a class array or similar

 <repeat>
 {
 <define fields of DataTable>
 (LlDefineField,
 LlDefineFieldExt,
 LlDefineFieldExtHandle)
 <print row>
 (LlPrintFields)
 <as long as warning repeat>
 (LlPrint,
 Ret = LlPrintFields)
 <as long as Ret = LL_WRN_TABLECHANGE repeat>
 {
 <get current table name>
 (LlPrintDbGetCurrentTable)
 <get current relation>
 (LlPrintDbGetCurrentTableRelation)

Programming Using the API

104

 <get current sorting>
 (LlPrintDbGetCurrentTableSortOrder)
 <generate an appropriate DataTable child object>
 <Ret = PrintTable(child DataTable)>
 }

 <next record in DataTable>
 }
 <until last record in DataTable is reached>

 <print footer line>
 (Ret = LlPrintFieldsEnd)
 < as long as warning "page full" repeat >
 (Ret = LlPrintFieldsEnd)
 <result = Ret>
}

Any sequence of tables and sub-tables can be printed with this code. The recursion
ensures that it works properly with any "depth", i.e. this code can control arbitrary
multilevel relations.

The Recursive Print Loop

For a complete print loop which is supporting sequence tables und sub-tables, there
is nothing more to do. The code from the last two sections makes sure that the
complete tree of the table structure is printed.

So only the finishing touches have to be added – e.g. to display a progress bar. The
structure of a layout can be quite complex. Thus it is not possible to just take the
current position inside the data source as percentage. This approach does not work
as soon as the user puts two tables in series. Therefore List & Label allows you to get
the count of tables at the root level (LlPrintDbGetRootTableCount()). Whenever you
display a data record from the root level, you can update the progress bar.

The following holds for the maximum available percentage of a table:

INT nMaxPerc = 100/LlPrintDbGetRootTableCount();

If you index the root tables from 0.. LlPrintDbGetRootTableCount()-1, you can
calculate the total percentage as

INT nPercTotal = nMaxPerc*nIndexCurrentTable+(nPerc/100*nMaxPerc);

where nPerc is the percentage position in the current table. To properly update the
progress bar, you can adapt the function PrintTable() from the last section. The
current depth of the recursion can be determined with another input parameter – if
this parameter is 0, a "root" data record is printed and the progress bar can be
updated:

function PrintTable(DataTable data object, depth of recursion depth)
{
 <repeat>

Printing Relational Data

105

 {
 <define fields of DataTable>
 ...
 <if depth==0 update progress bar>
 (LlPrintDbGetRootTableCount,
 LlPrintSetBoxText)
 <print row>
 (LlPrintFields)
 <as long as warning repeat >
 (LlPrint,
 Ret = LlPrintFields)
 <repeat until Ret <> LL_WRN_TABLECHANGE >
 {
 ...
 <generate an appropriate DataTable child object>
 <Ret = PrintTable(child DataTable, depth+1)>
 }
 ...
 }
}

Supplying Master Data as Variables

In the case of an order with the relevant order details, it could be desirable to offer
the "master" data, i.e. in this example the data of the table orders, as variables. So the
addressee could e.g. be displayed in a text object and the order details in a table
object. Therefore, at the root level of the table object you need to have access to the
sub-tables of the master table. In order to achieve this, call LlDbSetMasterTable(). The
necessary calls are

LlDbAddTable(hJob, "Orders", "");
LlDbAddTable(hJob, "OrderDetails", "");
LlDbAddTableRelation(hJob, "OrderDetails", "Orders",
 "Orders2OrderDetails", NULL);
LlDbSetMasterTable(hJob, "Orders");

The print loop is analogous to the description above, but you have to make the
appropriate child table available on the top level (see Chapter"Multiple Independent
Tables on the Same Level"):

<repeat>
{
 <get current table name>
 (LlPrintDbGetCurrentTable)
 <get current sorting>
 (LlPrintDbGetCurrentTableSortOrder)
 <get current relation>
 (LlPrintDbGetCurrentTableRelation)
 <if relation empty>
 <generate an appropriate DataTable object>
 <else>
 <generate an appropriate child DataTable object>

Programming Using the API

106

 <Ret = PrintTable(DataTable)>
}
<until Ret <> LL_WRN_TABLECHANGE>

<close printing>
 (LlPrintEnd)

5.5.4 Handling 1:1 Relations

When reporting 1:1 relations, the data is usually combined by a database query with
a SQL JOIN, so that the data is available in one table. If this is not the case or if you
don't want this, you can display the 1:1 relations in the list of variables below the
fields of the parent table. To accomplish this, you have to declare the fields in a
special syntax.

1:1 Relations Without a Key Field Definition

If the key fields for the relation are not relevant - if, for example, you are dealing with
a trivial, single 1:1 relation between the two connected tables - you can declare the
fields as follows:

<parent table>:<linked table>.<field name>, e.g.

OrderDetails:Orders.OrderDate

This adds a folder with the field OrderDate to the list of variables below the
OrderDetails hierarchy:

Of course, you must make sure that when printing the OrderDetails table, you fill this
field with the corresponding value for each record.

1:1 Relation With Key Field Definition

In case of multiple 1:1 connections, it might be important for the user to see which
of the key fields are linking the tables together. In this case you can declare the fields
as follows:

Callbacks and Notifications

107

<parent table>.<key field parent table>@<linked table>.<key field linked
table>:<field name>, e.g.

OrderDetails.OrderID@Orders.OrderID:OrderDate

(SQL equivalent: "SELECT OrderDate FROM Orders WHERE OrderDetails.OrderID=
Orders.OrderID")

Now the key field declaration is displayed in the tool window list of variables next to
the table name:

Again, remember to update the field contents when the parent table is printed!

Performance Hints

When using 1:1 relations, it is very important to check whether the user has actually
placed a field of the linked table. You can do this by using the wildcard option with
LlPrintIsFieldUsed(). If you want to check whether a field of the 1:1 linked table
Orders inside the table OrderDetails is being used, you can call

LlPrintIsFieldUsed(hJob, "OrderDetails.OrderID@Orders.OrderID*");

If the result is 0, no field of the table orders is being used and it is not necessary to
update the values.

5.6 Callbacks and Notifications
This chapter is only required if you're not working with one of the components
(.NET/VCL/OCX). If you're using one of these components, you may skip this chapter.

5.6.1 Overview

The following principle is to be understood by the expressions "callbacks and
notifications": when List & Label needs information then it just asks your program.
You don't have to pre-program all answers, just those for which you explicitly wish a
modified behavior.

Programming Using the API

108

For example, there are objects which are program definable (user objects, see next
chapter) which are handled by List & Label as a "black box". And when List & Label
has to print such an object it turns to your program to ask it to carry out this function.
This allows your application to extend the support for special objects, for example
graphics with formats not implemented in List & Label. This is easier than a whole
COM interface, because you need to supply only one function for the job.

Using the callback function you can add data to a page (important for labels: when
needed you can add information like page no., print date or similar onto a page
outside of the labels) which is controlled by the programmer (and consequently
cannot be removed by the user in the Designer). Objects can be hidden (this can also
be done with LlPrintEnableObject() or the appearance condition of an object).

All this is possible if you implement one of the following:

• a callback routine is defined and its address is passed on to List & Label by
LlSetNotificationCallback(), or

• you react to messages sent by List & Label via Windows messages. These are
sent by List & Label to the window which is stated with LlDefineLayout() and
LlPrintWithBoxStart().

In both cases you obtain detailed information about the function which is to be
carried out.

The rest of this chapter describes how to implement such a callback routine. For an
overview of all available callbacks, see chapter Callback Reference.

5.6.2 User Objects

As List & Label cannot draw all possible objects - be they spline objects, statistic
graphs or drawings with an unknown format - a function has been built into List &
Label to offer the programmer so-called user objects, as even metafile variables
cannot cover all areas.

If you have defined a variable in your program with

LlDefineVariableExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ, NULL);

the user can define an object in the Designer which is connected to this variable. This
takes place analogously to normal LL_DRAWING variables.

When List & Label needs to print this object, it calls your program using the callback
LL_CMND_DRAW_USEROBJ to pass this task on to your program, as List & Label
has no idea what kind of "visual" action needs to be taken.

The same can be done for table fields, so that the user has the capability of including
an user object in a table:

LlDefineFieldExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ, NULL);

Callbacks and Notifications

109

For variables, but not for fields, it is also possible to define user objects whose
parameters can be changed by the user in the Designer, just like the object
properties of List & Label's own objects. These objects are defined with the
LL_DRAWING_USEROBJ_DLG type:

LlDefineVariableExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ_DLG, NULL);

(This means that editable user objects cannot be inserted in tables. Only non-editable
user objects can be used as table field.)

If the user selects the image in the Designer and clicks on the Variable's "Properties"
sub item in the property window, the callback LL_EDIT_USEROBJ is invoked to
request a dialog in which the parameters belonging to the object can be changed.
These parameters are automatically stored in the project definition file with the other
object information and passed with the callback LL_DRAW_USEROBJ for evaluation,
so that your program does not have to take care of further storage of the parameters.

Please note the references of article 99109 (http://support.microsoft.com/kb/99109)
in the Microsoft Knowledge Base when you want to print DDBs (device-dependent
bitmaps) in callback objects: transform the DDB first of all to a DIB (device-
independent bitmap) if it is not compatible with the printer DC, otherwise irregular
behavior of the printer driver is pre-programmed.

5.6.3 Definition of a Callback Routine

A callback routine is defined like a normal Windows callback. For special features
such as compiler switches, please refer to your compiler manual.

The general form of a callback is, in C

LRESULT CALLBACK _extern LLCallback(INT nMsg, LPARAM lParam, UINT_PTR
lUserParam);

You can pass the routine pointer immediately:

LlSetNotificationCallback(hJob, LLCallback);

From now on your routine will be called by List & Label if necessary.

At the end of the program it is important that the callback is set to NULL, otherwise
your system will raise an unhandled exception.

LlSetNotificationCallback(hJob, NULL);

5.6.4 Passing Data to the Callback Routine

The value of the nMsg parameter determines the different functions. The values are
the constants which begin with LL_CMND_xxxx, e.g. LL_CMND_TABLEFIELD,
LL_NTFY_xxxx or LL_INFO.

Programming Using the API

110

Depending on the task your program has to perform, the parameter lParam has
different meanings. The individual meanings are described later on. They are mostly
structures (records) which lParam points to, so the value must therefore be cast by a
type conversion to a structure pointer:

LRESULT CALLBACK _extern
 LLCallback(INT wParam, LPARAM lParam, UINT_PTR lUserParam)
{
 PSCLLTABLEFIELD pSCF;

 switch (wParam)
 {
 case LL_CMND_TABLEFIELD:
 pSCF = (PSCLLTABLEFIELD)lParam;
 // do something using pSCF;
 break;
 }
 return(0);
}

The function must always return a defined value. Unless stated otherwise, this value
should be zero.

lUserParam is the value passed by

LlSetOption(hJob, LL_OPTION_CALLBACKPARAMETER, <Value>)

This can be used to store an object pointer ("this", "self") in object-oriented languages.

5.6.5 Passing Data by Messages

Every message has three parameters: nMsg, wParam and lParam in the following
definition of your message callback (this is called a window procedure, but is nothing
but a callback!)

LRESULT WINAPI MyWndProc(HWND hWnd, UINT nMsg, WPARAM wParam, LPARAM lParam);

The message value which List & Label uses can be queried by
LlGetNotificationMessage(). If the default setting is not suitable for your purposes (by
definition a unique value) another can be chosen with LlSetNotificationMessage().

wParam is once again our function index and lParam points to an intermediate
structure of the type scLlCallback:

struct scLlCallback
{
 int _nSize;
 LPARAM _lParam;
 LRESULT _lResult;
 UINT_PTR _lUserParameter;
}

Advanced Programming

111

The necessary _lParam (as parameter value) and _lResult (as return value) are stored
in this structure.

nLLMessage = LlGetNotificationMessage(hJob);
//....
//...in the window procedure...
if (wMsg == nLLMessage)
{
 PSCCALLBACK pSC;
 PSCLLTABLEFIELD pSCF;

 pSC = (PSCCALLBACK)lParam;
 switch (wParam)
 {
 case LL_CMND_TABLEFIELD:
 pSCF = (PSCLLTABLEFIELD)pSC->_lParam;
 // do something;
 pSC._lResult = 0;
 break;
 }
}

_lUserParam is the value passed by

LlSetOption(hJob, LL_OPTION_CALLBACKPARAMETER, <value>)

This can be used to store an object pointer ("this", "self") in object oriented languages.

When no special return value is needed, the _lResult field doesn't need to be
changed, as it is set to 0 by default.

5.6.6 Further Hints

Some callback structures for drawing operations contain two device contexts. Both
are identical and kept only for backward compatibility reasons..

If you select a GDI object in this DC or make other changes, e.g. change the mapping
mode, you should reverse the changes before ending the routine.

Tip: the Windows API functions SaveDC(), RestoreDC() can help considerably for
complex changes.

5.7 Advanced Programming
This chapter is only required if you're not working with one of the components
(.NET/VCL/OCX). If you're using one of these components, you may skip this chapter.

Programming Using the API

112

5.7.1 Direct Print and Export From the Designer

Introduction

It is possible to provide the Designer with data for preview, so that the user sees the
report as it will be when printed. Furthermore there is the possibility of printing or
exporting directly from the Designer.

For C++ there is already a fully functional sample source code available. You'll find it
in the "Samples" program group for "Visual C++", its title is "Designer Preview and
Drilldown ".

Your development environment must comply with the following conditions, so that
this feature can be supported:

 It can respond to callbacks (refer to Chapter Callbacks and Notifications)

 It can start a thread with a print procedure and supports synchronization
elements such as Mutex, Critical Section or similar.

The work to be undertaken by your code includes execution of your usual real data
print/ export routine, however – at least for the preview – in a separate thread. For
this purpose, information about the pending task (start, abort, end and query status)
is supplied via a callback. A pointer to a scLlDesignerPrintJob structure will be
passed, specifing all neccessary information for the respective task. There are only a
few changes necessary compared to a regular print/export.

Preparation

In order to enable the direct preview or export functionality within the designer, you
have to set one or both of the following options:

 LL_OPTION_DESIGNERPREVIEWPARAMETER for preview of real data

 LL_OPTION_DESIGNEREXPORTPARAMETER for the export from the
designer

The value that you pass via these options can be defined by yourself, for example a
pointer to an internal data structure or object. You receive this back unchanged in the
callback (scLlDesignerPrintJob._nUserParam). Important for List & Label is that it is
not 0 or -1.

Via callback LL_NTFY_DESIGNERPRINTJOB List & Label informs you about the task
that has to be performed. This callback will always be called in the context of the
designer thread (this is the thread, from which LlDefineLayout() was called).

When you use structure members, e.g. like _nUserParam, please ensure that the
thread has evaluated or copied them before you pass control back to List & Label, as
the structure will no longer be valid then – this is true for all Callbacks!

Advanced Programming

113

Tasks

Now to the individual tasks, that will be put to you via the callback being indicated by
various values of scLlDesignerPrintJob._nFunction. The symbolic constants for them
all start with LL_DESIGNERPRINTCALLBACK...:

Start Event (..._PREVIEW_START/..._EXPORT_START)

Should you receive this Event, you will have to create a thread and pass the start
parameters to it.

This thread creates a new List & Label- job, and causes the new job to basically lead
to the execution of "a standard" print loop. In addition to the normal print loop you will
have to perform the following modifications:

 Before print start set the option LL_OPTIONSTR_ORIGINALPROJECTFILENAME
to the path, as delivered by the structure.

 After starting the print job, use LlPrintSetOption(hJob ,LL_PRNOPT_LASTPAGE,
_nPages) to set the maximum number of pages to be printed, as passed by the
callback structure.

 After each LlPrint(), check if the number of pages has exceeded this value, if so
call function LlPrintAbort(). This optimization can and should also be used for
normal print jobs. In this case you should not abort, but end printing normally
using LlPrintEnd().

 Indicate the thread status using the provided event _hEvent of the callback
structure to List & Label, once at the start and once at the end of the thread. It is
important to synchronize the signaling of the event in a way that makes sure that
the following call to QUEST_JOBSTATE delivers the correct state
RUNNING/STOPPED. As you're signaling the event from the thread, you cannot
use the thread status, but will have to use a corresponding variable. This process
status has to be handled individually for each thread.

 Delete the remaining project data after printing

Additionally the following points have to be considered:

Preview

 Pass the window handle you've received in the callback structure via
LlAssociatePreviewControl(hJob,hWnd,1) to List & Label before calling
LlPrint(WithBox)Start, so that the print job is informed where the data should be
presented.

 After completing printing, that is after LlPrintEnd() call
LlAssociatePreviewControl(hJob,NULL,1), so that preview control regains control
of the preview data. If a print error occurs, the last parameter has to be 0, so that
the preview control is empty and not showing the last project.

Programming Using the API

114

Export

 Use LlPrintWithBoxStart(), so that a status box can be displayed. For the parent
window handle use additionally the window handle passed by the callback
structure.

 If the user selects a direct export from the Ribbon's menu (Windows Vista and
later), the _pszExportFormat member of the struct is set. In this case, call
LlPrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, _pszExportFormat) to
preset the required export format and do not show the print options dialog
(LlPrintOptionsDialog()) if _bWithoutDialog is TRUE.

Abort Event (..._PREVIEW_ABORT/..._EXPORT_ABORT)

If you receive this event, simply call LlPrintAbort() to abort the print job for the
preview/export thread. The print loop of the thread ensures correct handling.

Finalize Event (..._PREVIEW_FINALIZE/..._EXPORT_FINALIZE)

Will always be called, so that you can release internal data structures.

Status Query Event (..._PREVIEW_QUEST_JOBSTATE/..._EXPORT_
QUEST_JOBSTATE)

Is used to keep List & Label toolbar icons and menu options up to date. Return
LL_DESIGNERPRINTTHREAD_STATE_RUNNING when your thread is running,
otherwise return LL_DESIGNERPRINTTHREAD_STATE_STOPPED.

Activity

Of course you can support multiple start events. Before each start, List & Label
checks if a print thread is running, and stops it if necessary with an abort event.

Designer-Thread Print-Thread

Start-Event:
 Copies the start parameter of the
callback
 Starts the print thread and waits on
signal that it is ready (Event)

 starts:

 sets process status internally to
RUNNING

 indicates change of state per
SetEvent(hEvent) to List & Label

 indicate readiness

returns to List & Label

From now on both the designer and preview/export run in parallel.

Normal designer execution.  create new job

Advanced Programming

115

Abort

 calls LlPrintAbort() for the print job
and returns

Status Query

 returns the value of the process
status

Completion

 calls LlPrintAbort() if necessary and
waits for thread to end

 starts print loop with changes
already mentioned above

When printing is complete:

 set internal process state to
STOPPED

 indicate state change per
SetEvent(hEvent) to List & Label

 end job

 delete project file

It is advisable to use a unique structure for both output types, and then provide the
address of the structure using LL_OPTION_DESIGNERPREVIEWPARAMETER and
LL_OPTION_DESIGNEREXPORTPARAMETER to List & Label. This structure should
contain:

 a pointer to a object that manages the data source (if necessary i.e.
possible)

 a synchronization object (CRITICAL_SECTION)

 the thread handle of the thread in progress

 the job handle of the worker thread

 variables as copies of the start parameter

If your data source only allows single threaded access, you must set
LL_OPTION_DESIGNERPRINT_SINGLETHREADED to TRUE. This will be used by List &
Label, so that during the preview calculation no export is possible, and vice versa.

5.7.2 Drilldown Reports in Preview

Drilldown reporting means navigation in hierarchical data through different detail
levels.

Initially only the top level will be printed to preview (for example "Customers"). With a
click on a customer a new report (for example "Orders") will be opend, that contains
detail information for this record. In this manner you "drill down" through different
levels until you reach for example the products a customer has ordered in a specific
order. One of the advantages is the performance gain by means of specialization.
Drilldown is available in preview. Drilldown can be defined for table rows and table
fields.

Using drilldown requires that your development system can handle callbacks or
window notifications (see chapter Callbacks and Notifications)

Programming Using the API

116

The .NET and VCL components in databound mode support drilldown

automatically if a data source is used that supports hierarchies and can be reset.

Most DataProviders comply with this requirement. If using the component in this

manner, you can skip this chapter.

For C++ there is already a fully functional sample source code available. You'll find it
in the "Samples" program group for "Visual C++", its title is "Designer Preview and
Drilldown".

For other development systems it is suggested to implement drilldown with different
threads, so tasks can be done in the background. In this case you'll need to be able
to start a thread with the printing procedure and you'll need synchronisation elements
like mutex or critical section.

Your task is to initiate a real data print job with a corresponding filtered data source.
For this purpose information about the task (start and end of a drilldown report) is
available in the callback. Only minor changes to the normal print job routines are
necessary.

Preparations

To enable drilldown in List & Label set the option LL_OPTION_DRILLDOWNPARA-
METER to a value unequal to 0.

Please note that this option has to be set for each LL-job that should support
drilldown:

// activate Drilldown for current LL-Job
::LlSetOption(hJob, LL_OPTION_DRILLDOWNPARAMETER,
 (LPARAM)&oMyDrillDownParameters);

To deactivate drilldown for this LL-job set the option to NULL:

// deactivate Drilldown for current LL-Job
::LlSetOption(hJob, LL_OPTION_DRILLDOWNPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer
to an internal data structure or objecets. This parameter will be passed unchanged in
the callback for your use (scLlDrillDownJob._nUserParam). Please make sure the
parameter is not 0 or NULL unless you want to deactivate drilldown.

Via the callback LL_NTFY_VIEWERDRILLDOWN (for further description, please see
chapter Callbacks and Notifications) List & Label informs about the current task. This
callback will always be called in the context of the preview thread, regardless if
initiated from designer or preview print.

When you use structure members, e.g. like _nUserParam, please ensure that the
thread has evaluated or copied them before you pass control back to List & Label, as
the structure will no longer be valid then – this is true for all Callbacks!

Advanced Programming

117

Tasks

Now to the individual tasks, that will be put to you via the callback being indicated by
various values of scLlDrillDownJob._nFunction:

5.7.2.1.1 Start Event (LL_DRILLDOWN_START)

If this event is fired, you can create a thread and pass on the drilldown parameters. If
your development systems does not support threads, you should use the main
thread for the print job. In this case your program will not be usable for this period.

The return value of the callback (resp. the _lReply member of the scLlCallback-
structure) should be set to a unique number, so you can assign the drilldown reports
to the corresponding thread.

Example:

…
LRESULT lResult = 0;
case LL_DRILLDOWN_START:
{
 scLlDrillDownJob* pDDJob = (scLlDrillDownJob*)lParam;
 … StartSubreport(pDDJob); …
 // generate new Drilldown-JobID
 lResult = ++m_nUniqueDrillDownJobID;
}
case LL_DRILLDOWN_FINALIZE:
{
 scLlDrillDownJob* pDDJob = (scLlDrillDownJob*)lParam;
 if (pDDJob->_nID == 0)
 {
 // clean up
 }
 else
 {
 // clean up the corresponding job
 }
}
…
return (lResult);
}
…

After copying the parameters, this thread creates a new List & Label job that uses the
regular print loop. The following differences have to be made before calling
LlPrintStart():

 set the option LL_OPTIONSTR_PREVIEWFILENAME to the path, that has been
passed in the structure with _pszPreviewFileName

Example:

// set preview filename
::LlSetOptionString(pMyDrillDownParameters->m_hLlJob,

Programming Using the API

118

 LL_OPTIONSTR_PREVIEWFILENAME,
 pMyDrillDownParameters ->m_sPreviewFileName);

 Pass on the _hAttachInfo to List & Label that has been passed with the callback
structure, so the print job is informed whrere the data should be displayed.

Example:

// attach viewer
::LlAssociatePreviewControl(pMyDrillDownParameters->m_hLlJob,
 (HWND)pMyDrillDownParameters->_hAttachInfo,
 LL_ASSOCIATEPREVIEWCONTROLFLAG_DELETE_ON_CLOSE |
 LL_ASSOCIATEPREVIEWCONTROLFLAG_HANDLE_IS_ATTACHINFO);

5.7.2.1.2 Finalize Event (LL_DRILLDOWN_FINALIZE)

This event will be called for drilldown jobs, that have been canceled, so you can
release internal data structures. Additionally it is suggested, that active print jobs
should be aborted by calling LlPrintAbort().

If the _nID member of the scLlDrillDownJob structure that has been passed by List &
Label is 0 all active drilldown jobs can be ended and released. This happens if ending
the preview.

5.7.2.1.3 Preparing the Data Source

To provide the correct data for the drilldown report minor changes to the printing
loop are neccessary.

Relation(s)

Drilldown can only be used when relations are declared. For drilldown reports use the
function LlDbAddTableRelationEx(). This function has 2 additional parameters:
pszKeyField and pszParentKeyField for the key field of the child table and the key field
of the parent table, so a unique assignment can be made.

Further information can be found in the description of the function
LlDbAddTableRelationEx().

Please note, that the key fields must contain the table name as a prefix, for example
"Customers.CustomerID".

Example:

Declare the relation between 'Customers' and 'Orders' table for drilldown using the
northwind sample.

// add relation
…
CString sParentField = pMyDrillDownParameters->_pszSubreportTableID +
 _T(".")+pMyDrillDownParameters->_pszKeyField;
//Orders.CustomerID
CString sChildField = pMyDrillDownParameters->_pszTableID + _T(".") +
 pMyDrillDownParameters->_pszSubreportKeyField;

Advanced Programming

119

//Customers.OrderID
::LlDbAddTableRelationEx(hJob,
 pMyDrillDownParameters->_pszSubreportTableID, // "Orders"
 pMyDrillDownParameters->_pszTableID, // "Customers"
 pMyDrillDownParameters->_pszRelationID, _T(""),
 sParentField, sChildField);
…

Datasource

For each drilldown report the datasource should be filtered differently, because only
the data related to the parent record that has been clicked is needed.

For example you want to create a drilldown structure from "Customers" to "Orders". In
this case the parent table should show all customers. A click on one customer should
show only the corresponding orders related to this special customer. Therefor the
datasource must only contain the orders from this customer. All necessary
information for filtering the child table can be found in the structure
'scLlDrillDownJob'.

5.7.3 Supporting the Report Parameter Pane in Preview

Out of the box, report parameter printing is already supported automatically.
However, if you want to support a re-rendering from the preview window, you need
to signal your support to List & Label by setting some additional options. For
convenience, this feature uses the same callback as drilldown printing, so in most
cases you can simply reuse your existing code and just make sure it works even if no
drilldown filter is set in the passed structure (i.e. all table IDs and key field values are
empty).

Preparations

To enable report parameter printing in List & Label set the option
LL_OPTION_REPORT_PARAMETERS_REALDATAJOBPARAMETER to a value unequal
to 0.

Please note that this option has to be set for each LL-job that should support report
parameter printing:

// activate report parameter pane for current LL-Job
::LlSetOption(hJob, LL_OPTION_REPORT_PARAMETERS_REALDATAJOBPARAMETER,
 (LPARAM)&oMyReportParameters);

To deactivate report parameter printing for this LL-job set the option to NULL:

// deactivate report parameter pane for current LL-Job
::LlSetOption(hJob, LL_OPTION_REPORT_PARAMETERS_REALDATAJOBPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer
to an internal data structure or objects. This parameter will be passed unchanged in

Programming Using the API

120

the callback for your use (scLlDrillDownJob._nUserParam). Please make sure the
parameter is not 0 or NULL unless you want to deactivate report parameter printing.

Via the callback LL_NTFY_VIEWERDRILLDOWN (for further description, please see
chapter Drilldown Reports in Preview) List & Label informs about the current task.
This callback will always be called in the context of the preview thread, regardless if
initiated from designer or preview print.

When you use structure members, e.g. like _nUserParam, please ensure that the
thread has evaluated or copied them before you pass control back to List & Label, as
the structure will no longer be valid then – this is true for all Callbacks!

5.7.4 Supporting Expandable Regions in Preview

If this feature is supported, elements in the report container can be expanded and
collapsed dynamically in the preview window. For convenience, this feature uses the
same callback as drilldown printing, so in most cases you can simply reuse your
existing code and just make sure it works even if no drilldown filter is set in the
passed structure (i.e. all table IDs and key field values are empty).

Preparations

To enable expandable regions in List & Label set the option
LL_OPTION_EXPANDABLE_REGIONS_REALDATAJOBPARAMETER to a value unequal
to 0.

Please note that this option has to be set for each LL-job that should support
expandable regions:

// activate expandable regions for current LL-Job
::LlSetOption(hJob, LL_OPTION_EXPANDABLE_REGIONS_REALDATAJOBPARAMETER,
 (LPARAM)&oMyExpandableRegions);

To deactivate expandable regions for this LL-job set the option to NULL:

// deactivate expandable regions for current LL-Job
::LlSetOption(hJob, LL_OPTION_EXPANDABLE_REGIONS_REALDATAJOBPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer
to an internal data structure or objecets. This parameter will be passed unchanged in
the callback for your use (scLlDrillDownJob._nUserParam). Please make sure the
parameter is not 0 or NULL unless you want to deactivate expandable regions.

Via the callback LL_NTFY_VIEWERDRILLDOWN (for further description, please see
chapter Drilldown Reports in Preview) List & Label informs about the current task.
This callback will always be called in the context of the preview thread, regardless if
initiated from designer or preview print.

Advanced Programming

121

When you use structure members, e.g. like _nUserParam, please ensure that the
thread has evaluated or copied them before you pass control back to List & Label, as
the structure will no longer be valid then – this is true for all Callbacks!

5.7.5 Supporting Interactive Sorting in Preview

If this feature is supported, report container table header fields can be used to toggle
between different sortings in the preview window. For convenience, this feature uses
the same callback as drilldown printing, so in most cases you can simply reuse your
existing code and just make sure it works even if no drilldown filter is set in the
passed structure (i.e. all table IDs and key field values are empty).

Preparations

To enable interactive sortings in List & Label set the option
LL_OPTION_INTERACTIVESORTING_REALDATAJOBPARAMETER to a value unequal
to 0.

Please note that this option has to be set for each LL-job that should support
interactive sortings:

// activate interactive sortings for current LL-Job
::LlSetOption(hJob, LL_OPTION_INTERACTIVESORTING_REALDATAJOBPARAMETER,
 (LPARAM)&oMyInteractiveSortings);

To deactivate interactive sortings for this LL-job set the option to NULL:

// deactivate interactive sortings for current LL-Job
::LlSetOption(hJob, LL_OPTION_INTERACTIVESORTING_REALDATAJOBPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer
to an internal data structure or objecets. This parameter will be passed unchanged in
the callback for your use (scLlDrillDownJob._nUserParam). Please make sure the
parameter is not 0 or NULL unless you want to deactivate expandable regions.

Via the callback LL_NTFY_VIEWERDRILLDOWN (for further description, please see
chapter Drilldown Reports in Preview) List & Label informs about the current task.
This callback will always be called in the context of the preview thread, regardless if
initiated from designer or preview print.

When you use structure members, e.g. like _nUserParam, please ensure that the
thread has evaluated or copied them before you pass control back to List & Label, as
the structure will no longer be valid then – this is true for all Callbacks!

5.7.6 Handling Chart and Crosstab Objects

The easiest way to work with charts and crosstabs is to insert them into the report
container. See chapter "Printing Relational Data" for a detailed explanation.

Programming Using the API

122

However, for label and card projects it might be interesting to access these objects
separately.

In the following chapter whenever "chart" is mentioned "crosstab" also applies.

Besides working with the report container, there are two different modes when
handling chart objects. Choose the one you require via the option
LL_OPTION_USECHARTFIELDS. In principle, printing charts is similar to printing
tables, i.e. you first declare a data record you wish to pass to the chart object and
pass this record afterwards.

Standard Mode (Default)

This mode can only be used with list projects and does not require any changes to
existing projects. The chart objects are fed with the same data as the table objects,
an LlPrintFields() sends data to both chart objects and table objects. However, the
charts only accumulate the data and are not printed right away. This mode is
included for compatibility reasons and can be used to easily fill charts that are linked
to table objects.

Enhanced Mode

This mode is activated by setting the option LL_OPTION_USECHARTFIELDS to TRUE.
In this case, besides variables and fields you have special chart fields available. These
can be declared similarly to normal fields via API calls. This mode offers more
flexibility than the standard mode; your users may

• use chart objects wherever they like (no printing order has to be obeyed)

• use chart objects in label / card projects.

LlPrintFields() in this mode does not have any influence on the charts, the analogous
command in the enhanced mode is LlPrintDeclareChartRow(). This API call passes
the data currently defined to the chart objects. Which chart objects are addressed
can be determined by the parameter:

Value Meaning

LL_DECLARECHARTROW_-
FOR_OBJECTS

The data is passed to all chart objects not
contained in table columns.

LL_DECLARECHARTROW_-
FOR_TABLECOLUMNS

The data is passed to all chart objects in
table columns.

For charts within a label project, the following pseudo code would apply:

<print start>
 (LlPrintStart,
 LlPrintWithBoxStart)

Using the DOM-API (Professional/Enterprise Edition Only)

123

<while
 - no error and not finished>
{
 <define variables>
 <while
 - no error or
 - not finished (ex. i = 1..12)>
 {
 <define chart fields (ex. Month = MonthName[i])>
 <send data to chart controls>
 (LlPrintDeclareChartRow(LL_DECLARECHARTROW_FOR_OBJECTS))
 }

 <print objects>
 (LlPrint)
 <no warning, no abortion: next record>
 }
<done>
 (LlPrintEnd)

Of course, all chart fields used must also be declared before calling the Designer, in
order to enable your users to use them at all.

5.8 Using the DOM-API (Professional/Enterprise Edition
Only)

This chapter is only required if you're not working with one of the components
.NET/VCL, where a type safe object model for accessing the DOM functionality is
available. If you're using one of these components, you may skip this chapter and
turn to one of the DOM samples for a quick start.

In order to create project files dynamically for the runtime or to edit existing project
files by code, you can use the List & Label DOM functions.

5.8.1 Basic Principles

Each "object" within a project file has its own handle ("DOM handle"). The functions of
the DOM-API use this handle to uniquely identify objects. An "object" in this sense is
any designer object, but also other elements such as auxiliary lines, project
parameters etc. The DOM viewer included in the scope of supply enables a quick
overview of all objects, their value and other properties. In addition, properties /
values can be changed with the viewer, and saved in the project. The clipboard
function enables any object or property to be copied to the clipboard for further use.

The functions relevant for the DOM-API are divided into 2 groups: first of all, project
files can be loaded, created and saved. The functions LlProjectOpen(),
LlProjectClose() and LlProjectSave() are available for this purpose. The function

Programming Using the API

124

LlDomGetProject() (called immediately after LlProjectOpen()) returns the DOM handle
for the project object. This then provides the basis for using the other functions.

DOM Functions

LlDomGetObject

With this function, important subobjects can be obtained from the project object. In
order to obtain the object list, for example,

LlProjectOpen(hJob, LL_PROJECT_LIST, "c:\\filename.lst",
 LL_PRJOPEN_AM_READONLY);
HLLDOMOBJ hProj;
LlDomGetProject(hJob, &hProj);
HLLDOMOBJ hObjList;
INT nRet = LlDomGetObject(hProj, "Objects", &hObjList);

can be used. The other available objects correspond to the entries in the tree
structure in the DOM viewer: "Layout", "ProjectParameters", "Settings", "SumVars" and
"UserVars". A description of the individual objects with most properties can be found
in the reference chapter; the emphasis here is on the principle of working with the
DOM functions.

LlDomGetSubobjectCount

Serves to query the number of subobjects in the specified list. To query the number
of objects in the project, for instance, use

INT nObjCount;
INT nRet = LlDomGetSubobjectCount(hObjList, &nObjCount);

LlDomGetSubobject

Returns the DOM handle of the specified subobject. In addition to the DOM handle
for the list, parameters are the index (0-based) and a pointer for return of the handle.
The code for a DOM handle to the first object in the projectfile is

HLLDOMOBJ hObj;
INT nRet = LlDomGetSubobject(hObjList, 0, &hObj);

LlDomCreateSubobject

Creates a new subobject in the specified list. Parameters are the list handle, the
insertion position, the desired type and a handle pointer for the new object. In order
to insert a new text object at the beginning of the object list, use

Using the DOM-API (Professional/Enterprise Edition Only)

125

HLLDOMOBJ hObj;
INT nRet = LlDomCreateSubobject(hObjList, 0, _T("Text"), &hObj);

You can create the following objects within the object list with the help of these
functions, for example:

Object type Required third parameter

Line "Line"

Rectangle "Rectangle"

Ellipse "Ellipse"

Drawing "Drawing"

Text "Text"

Template "Template"

Barcode "Barcode"

RTF "RTFText"

HTML "LLX:LLHTMLObject"

Report container (may contain tables,
charts and crosstabs)

"ReportContainer"

Gauge "Gauge"

PDF "PDF"

Further possible values for other lists (e.g. field list within a table) can be found in the
DOM Viewer's online help.

LlDomDeleteSubobject

Deletes the specified subobject. In order to delete the first object in the object list,
for example, use the code

INT nRet = LlDomDeleteSubobject(hObjList, 0);

LlDomSetProperty

Allows you to set a property for the specified object. In order to allow the pagebreak
for a text object, for example, you need

Programming Using the API

126

INT nRet = LlDomSetProperty(hObj, _T("AllowPageWrap"), _T("True"));

The transfer parameter for the value must be a valid List & Label formula. A special
feature results for properties that contain character strings (e.g. the content of a text
paragraph): character strings must be set in quotation marks within the Designer, to
enable their use as a valid formula. Therefore, in order to transfer the fixed text
"combit", the parameter "'combit'" must be used. This also applies for fixed font
names, for example; once again, "'Verdana'" must be transferred, for example, not
"Verdana".

Example code: LlDomSetProperty(hObj, _T("Contents"), _T("'") + sProjectTitle +
_T("'"));

In order to set the values of nested properties, such as the color of a filling, the
property name "<Parent property>.<Child property>" can be used, so for example

INT nRet = LlDomSetProperty(hObj, _T("Filling.Color"), _T("LL.Color.Black"));

LlDomGetProperty

Reads out the value of a property. It is advisable to determine the necessary buffer
length first of all by transferring a NULL buffer, as usual, and then to allocate an
adequately large buffer:

INT nBufSize = LlDomGetProperty(hObj, _T("AllowPageWrap"), NULL, 0);
TCHAR* pszBuffer = new TCHAR[nBufSize];
INT nRet = LlDomGetProperty(hObj, _T("AllowPageWrap"), pszBuffer, nBufSize);
…
delete[] pszBuffer;

For simplification, objects (but not lists!) can also be "tunneled through" using the full
stop as hierarchy separator, as for example:

...

//US: Get the page coordinates for the first page
LlDomGetProperty(hRegion, _T("Paper.Extent.Horizontal"),
 pszContainerPositionWidth, nBufSize);

Units

Many properties contain information on sizes, widths etc. These are - if transferred as
fixed numbers - interpreted and returned as SCM units (1/1000 mm) and are

Using the DOM-API (Professional/Enterprise Edition Only)

127

therefore independent of the selected unit system. In order to place an object in a
(fixed) position 5 mm from the left margin, you would use

INT nRet = LlDomSetProperty(hObj, _T("Position.Left"), _T("5000"));

If the property is to contain a formula rather than a fixed value, the function
UnitFromSCM must be used, in order to be independent of the units. An inside
margin with an indent of 10 mm on odd and 5 mm on even pages would be
produced with

INT nRet = LlDomSetProperty(hObj, _T("Position.Left"), T("Cond(Odd(Page()),
 UnitFromSCM(10000), UnitFromSCM(5000))"));

5.8.2 Examples

Creating a Text Object

The following code creates a new project, inserts a text object inside which is a new
paragraph with the content "DOM", and saves the project:

HLLJOB hJob = LlJobOpen(-1);

// Create new project
LlProjectOpen(hJob,LL_PROJECT_LIST,"c:\\simple.lst",
 LL_PRJOPEN_CD_CREATE_ALWAYS | LL_PRJOPEN_AM_READWRITE);

HLLDOMOBJ hProj;
LlDomGetProject(hJob, &hProj);

// Get object list
HLLDOMOBJ hObjList;
LlDomGetObject(hProj, "Objects", &hObjList);

// Create text object
HLLDOMOBJ hObj;
LlDomCreateSubobject(hObjList, 0, _T("Text"), &hObj);
LlDomSetProperty(hObj, _T("Name"), _T("My new Textobject"));

// Get paragraph list
HLLDOMOBJ hObjParagraphList;
LlDomGetObject(hObj, _T("Paragraphs"), &hObjParagraphList);

// Create new paragraph and create contents
HLLDOMOBJ hObjParagraph;
LlDomCreateSubobject(hObjParagraphList, 0, _T("Paragraph"), &hObjParagraph);

Programming Using the API

128

LlDomSetProperty(hObjParagraph, _T("Contents"), _T("'DOM'"));

// Save project
LlProjectSave(hJob, NULL);
LlProjectClose(hJob);

LlJobClose(hJob);

Creating a Table

This example shows the creation of a table object inside a report container and
creates a new dataline and three columns inside it.

Please note that, even if you do not use the APIs to control the report container, you
must create a report container with exactly one table.

HLLJOB hJob = LlJobOpen(-1);
// Create new project
LlProjectOpen(hJob, LL_PROJECT_LIST, "c:\\simple.lst",
 LL_PRJOPEN_CD_CREATE_ALWAYS | LL_PRJOPEN_AM_READWRITE);

HLLDOMOBJ hProj;
LlDomGetProject(hJob, &hProj);

// Get object list
HLLDOMOBJ hObjList;
LlDomGetObject(hProj, "Objects", &hObjList);

// Create report container and set properties
HLLDOMOBJ hObjReportContainer;
LlDomCreateSubobject(hObjList, 0,
_T("ReportContainer"),&hObjReportContainer);
LlDomSetProperty(hObjReportContainer,_T("Position.Left"), _T("27000"));
LlDomSetProperty(hObjReportContainer,_T("Position.Top"), _T("103500"));
LlDomSetProperty(hObjReportContainer,_T("Position.Width"), _T("153400"));
LlDomSetProperty(hObjReportContainer,_T("Position.Height"), _T("159500"));

// Get subobject list and create table inside it
HLLDOMOBJ hObjSubItems;
LlDomGetObject(hObjReportContainer, _T("SubItems"), & hObjSubItems);
HLLDOMOBJ hObjTable;
LlDomCreateSubobject(hObjSubItems, 0, _T("Table"), &hObjTable);

// Get line list
HLLDOMOBJ hObjTableLines;
LlDomGetObject(hObjTable , _T("Lines"), &hObjTableLines);

// Get data line list
HLLDOMOBJ hObjTableData;

Using the DOM-API (Professional/Enterprise Edition Only)

129

LlDomGetObject(hObjTableLines , _T("Data"), &hObjTableData);

// Create new line definition
HLLDOMOBJ hObjTableLine;
LlDomCreateSubobject(hObjTableData, 0, _T("Line"), &hObjTableLine);
LlDomSetProperty(hObjTableLine,_T("Name"), _T("My new table line"));

// Get header list
HLLDOMOBJ hObjTableHeader;
LlDomGetObject(hObjTableLines , _T("Header"), &hObjTableHeader);

// Create new line definition
HLLDOMOBJ hObjTableHeaderLine;
LlDomCreateSubobject(hObjTableHeader, 0, _T("Line"), &hObjTableHeaderLine);

// Get field list for headers
HLLDOMOBJ hObjTableHeaderFields;
LlDomGetObject(hObjTableHeaderLine , _T("Fields"), &hObjTableHeaderFields);

// Get field list for data lines
HLLDOMOBJ hObjTableDataFields;
LlDomGetObject(hObjTableLine , _T("Fields"), &hObjTableDataFields);

TCHAR aczVarName[1024];
int nItemCount = 3;
for (int i=0; i < nItemCount; i++)
{
 sprintf(aczVarName, "'Var%d'", i);

 // Create new field in header and set properties
 HLLDOMOBJ hObjHeaderField;
 LlDomCreateSubobject(hObjTableHeaderFields, 0, _T("Text"),
 &hObjHeaderField);
 LlDomSetProperty(hObjHeaderField, _T("Contents"), aczVarName);
 LlDomSetProperty(hObjHeaderField,_T("Filling.Style"), _T("1"));
 LlDomSetProperty(hObjHeaderField,_T("Filling.Color"),
 _T("RGB(204,204,255)"));
 LlDomSetProperty(hObjHeaderField,_T("Font.Bold"), _T("True"));
 LlDomSetProperty(hObjHeaderField,_T("Width"), _T("50000"));

 sprintf(aczVarName, "Var%d", i);

 // Create new field in data line and set properties
 HLLDOMOBJ hObjDataField;
 LlDomCreateSubobject(hObjTableDataFields, 0, _T("Text"),
 &hObjDataField);

 LlDomSetProperty(hObjDataField,_T("Contents"), aczVarName);
 LlDomSetProperty(hObjDataField,_T("Width"), _T("50000"));
}

// Save project

Programming Using the API

130

LlProjectSave(hJob, NULL);
LlProjectClose(hJob);
LlJobClose(hJob);

Setting the Project Parameters

The following code sets project parameters in an existing List & Label project for fax
and mail dispatch:

HLLJOB hJob = LlJobOpen(-1);

LlProjectOpen(hJob, LL_PROJECT_LIST, "c:\\simple.lst",
 LL_PRJOPEN_CD_OPEN_EXISTING | LL_PRJOPEN_AM_READWRITE);

HLLDOMOBJ hProj;
LlDomGetProject(hJob, &hProj);

// Fax parameter:
LlDomSetProperty(hProj, _T("ProjectParameters.LL.FAX.RecipName.Contents"),
 _T("'sunshine agency'"));
LlDomSetProperty(hProj, _T("ProjectParameters.LL.FAX.RecipNumber.Contents"),
_T("'555-555 555'"));
LlDomSetProperty(hProj,
 _ T("ProjectParameters.LL.FAX.SenderCompany.Contents"),
 _T("'combit'"));
LlDomSetProperty(hProj,_T("ProjectParameters.LL.FAX.SenderName.Contents"),
 _T("John Q. Public'"));

// Mail parameter:
LlDomSetProperty(hProj, _T("ProjectParameters.LL.MAIL.Subject.Contents"),
 _T("'Your request'"));
LlDomSetProperty(hProj, _T("ProjectParameters.LL.MAIL.From.Contents"),
 _T("'info@combit.net'"));
LlDomSetProperty(hProj, _T("ProjectParameters.LL.MAIL.To.Contents"),
 _T("'info@sunshine-agency.net'"));

// Save project
LlProjectSave(hJob, NULL);
LlProjectClose(hJob);
LlJobClose(hJob);

Function Reference

131

6. API Reference

6.1 Function Reference

LlAddCtlSupport

Syntax:

INT LlAddCtlSupport (HWND hWnd, UINT nFlags, LPCTSTR lpszInifile;

Task:

Allows you to use combit dialog styles in your own application.

Parameter:

hWnd: Window-handle of the program

nFlags: Multiple flags can be used by adding these constants:

Value Meaning

LL_CTL_ADDTOSYSMENU Extends the system menu of the program
with a choice of a dialog style.

LL_CTL_ALSOCHILDREN Ensures that the child windows
automatically use the same dialog styles as
their parent.

LL_CTL_-
CONVERTCONTROLS

Ensures that correct drawing is possible
even with VB ("Thunder") Controls.

lpszInifile: Name of a valid registry key. Suggestion: leave empty ("") to use
the default.

Return Value:

Error code

Hints:

Enables e.g. your application to be provided with other (combit) dialog styles.

Example:

LlAddCtlSupport(hWndMain, LL_CTL_ALSOCHILDREN |

LL_CTL_CONVERTCONTROLS, "");

LlAssociatePreviewControl

Syntax:

INT LlAssociatePreviewControl(HLLJOB hJob, HWND hWndControl,

 UINT nFlags);

API Reference

132

Task:

Associates a LL job to a preview control.

Parameters:

hJob: List & Label job handle

hWnd: window handle

nFlags:

Value Meaning

LL_ASSOCIATEPREVIEW-
CONTROLFLAG_DELETE_-
ON_CLOSE

Automatically delete preview file when preview is
closed

LL__ASSOCIATEPREVIEW-
CONTROLFLAG_HANDLE_-
IS_ATTACHINFO

Informs the API, that the passed window handle is
a pointer to a structure containing drilldown
information

LL_ASSOCIATEPREVIEW-
CONTROLFLAG_PRV_-
REPLACE

If LL_ASSOCIATEPREVIEWCONTROLFLAG_-
HANDLE_IS_ATTACHINFO is not set: the current
preview will be replaced by this preview

LL_ASSOCIATEPREVIEW-
CONTROLFLAG_PRV_-
ADD_TO_CONTROL_STACK

If LL_ASSOCIATEPREVIEWCONTROLFLAG_-
HANDLE_IS_ATTACHINFO is not set: this preview
is added to the current preview tab

LL_ASSOCIATEPREVIEW-
CONTROLFLAG_PRV_-
ADD_TO_CONTROL_IN_-
TAB

If LL_ASSOCIATEPREVIEWCONTROLFLAG_-
HANDLE_IS_ATTACHINFO is not set: this preview
is added to the current preview window in a new
tab

If necessary combined with 'or'.

Return Value:

Error code

Hints:

See chapter "Direct Print and Export From the Designer".

Example:

See chapter "Direct Print and Export From the Designer".

LlCreateSketch

Syntax:

INT LlCreateSketch (HLLJOB hJob, UINT nObjType, LPCTSTR lpszObjName);

Function Reference

133

Task:

Creates a sketch that can later be displayed in the file selection dialogs. The
color depth can be set using LL_OPTION_SKETCHCOLORDEPTH

Parameter:

hJob: List & Label job handle

nObjType: Project type

Value Meaning

LL_PROJECT_LABEL for labels

LL_PROJECT_CARD for cards

LL_PROJECT_LIST for lists

lpszObjName: Pointer to project's file name (with path)

Return Value:

Error code

Hints:

This API function can be used to create the sketches on-the-fly automatically,
so that you do not need to include the sketch files in your setup.

See also:

LlSelectFileDlgTitleEx

LlDbAddTable

Syntax:

INT LlDbAddTable(HLLJOB hJob, LPCTSTR pszTableID,

 LPCTSTR pszDisplayName);

Task:

Adds a table or schema for designing and printing. This table is available in
the Designer and List & Label can request it at print time.

Parameter:

hJob: List & Label job handle

pszTableID: Unique name of the table. It is returned by the
LlPrintDbGetCurrentTable() function at print time. If you pass an empty string
or NULL, the table buffer will be deleted.

pszDisplayName: Name of the table as displayed in the Designer. If no name
is given, the display name and the unique name are identical.

API Reference

134

Return Value:

Error code

Hints:

If a table name contains a "." a schema will be used.

See the hints in chapter "Printing Relational Data".

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDbAddTable(hJob, "", NULL);

LlDbAddTable(hJob, "Orders", NULL);

LlDbAddTable(hJob, "OrderDetails", NULL);

LlDbAddTable(hJob, " HumanResources.Employee", NULL); // schema info

<... etc ...>

LlJobClose(hJob);

See also:

LlDbAddTableSortOrder, LlDbAddTableRelation, LlPrintDbGetCurrentTable,
LlPrintDbGetCurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlDbAddTableEx

Syntax:

INT LlDbAddTableEx(HLLJOB hJob, LPCTSTR pszTableID,

 LPCTSTR pszDisplayName, UINT nOptions);

Task:

Adds a table or schema for designing and printing and supports additional
options. This table is available in the Designer and List & Label can request it
at print time.

Parameter:

hJob: List & Label job handle

pszTableID: Unique name of the table. It is returned by the
LlPrintDbGetCurrentTable() function at print time. If you pass an empty string
or NULL, the table buffer will be deleted.

pszDisplayName: Name of the table as displayed in the Designer. If no name
is given, the display name and the unique name are identical.

nOptions: a combination of one of the following flags:

Value Meaning

Function Reference

135

LL_ADDTABLEOPT_-
SUPPORTSSTACKEDSORTO
RDERS

Support stacked sort orders in the
designer. If the user chooses multiple
stacked sortings, these are returned tab
separated in
LlPrintDbGetCurrentTableSortOrder()

LL_ADDTABLEOPT_-
SUPPORTSADVANCEDFILT
ERING

Support the translation of filter expressions
to native syntax. See the documentation for
the LL_QUERY_EXPR2HOSTEXPRESSION
callback and
LlPrintDbGetCurrentTableFilter()

Return Value:

Error code

Hints:

If a table name contains a "." a schema will be used.

See the hints in chapter "Printing Relational Data".

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDbAddTable(hJob, "", NULL);

LlDbAddTable(hJob, "Orders", NULL);

LlDbAddTable(hJob, "OrderDetails", NULL);

LlDbAddTable(hJob, " HumanResources.Employee", NULL); // schema info

<... etc ...>

LlJobClose(hJob);

See also:

LlDbAddTableSortOrder, LlDbAddTableRelation, LlPrintDbGetCurrentTable,
LlPrintDbGetCurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlDbAddTableRelation

Syntax:

INT LlDbAddTableRelation(HLLJOB hJob, LPCTSTR pszTableID,

 LPCTSTR pszParentTableID, LPCTSTR pszRelationID,

 LPCTSTR pszRelationDisplayName);

Task:

This method can be used to define relations between the tables added via
LlDbAddTable(). List & Label does not directly distinguish between different
relation types. You simply pass a relation and its ID, and you can query the
current relation later at print time using LlPrintDbGetCurrentTableRelation().

API Reference

136

Parameter:

hJob: List & Label job handle

pszTableID: ID of the child table. Must be identical to the ID passed in
LlDbAddTable().

pszParentTableID: ID of the parent table. Must be identical to the ID passed
in LlDbAddTable().

pszRelationID: Unique ID of the table relation. It is returned by
LlPrintDbGetCurrentTableRelation() at print time.

pszRelationDisplayName: Name of the table relation as displayed in the
Designer and it is not saved to the project file. If no name is given, the display
name and the unique name are identical.

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the parent
and child table must be passed with LlDbAddTable().

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDbAddTable(hJob, "Orders", NULL);

LlDbAddTable(hJob, "OrderDetails", NULL);

LlDbAddTableRelation(hJob, "OrderDetails", "Orders",

 "Orders2OrderDetails", NULL);

<... etc ...>

LlJobClose(hJob);

See also:

LlDbAddTable, LlDbAddTableSortOrder, LlPrintDbGetCurrentTable,
LlPrintDbGet-CurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlDbAddTableRelationEx

Syntax:

INT LlDbAddTableRelationEx(HLLJOB hJob, LPCTSTR pszTableID,

 LPCTSTR pszParentTableID, LPCTSTR pszRelationID,

 LPCTSTR pszRelationDisplayName, LPCTSTR pszKeyField,

 LPCTSTR pszParentKeyField);

Function Reference

137

Task:

This method can be used to define a relation between two tables added via
LlDbAddTable(), especially for drilldown support. List & Label does not directly
distinguish between different relation types. You simply pass a relation and its
ID, and you can query the current relation later at print time using
LlPrintDbGetCurrentTableRelation().

Parameter:

hJob: List & Label job handle

pszTableID: ID of the child table. Must be identical to the ID passed in
LlDbAddTable().

pszParentTableID: ID of the parent table. Must be identical to the ID passed
in LlDbAddTable().

pszRelationID: ID of the table relation. It is returned by
LlPrintDbGetCurrentTableRelation() at print time.

pszRelationDisplayName: Name of the table relation as displayed in the
Designer and it is not saved to the project file. If no name is given, the display
name and the unique name are identical.

pszKeyField: Key field of the child table, multiple key fields can be added as
tab separated list

pszParentKeyField: Key field of the parent table, multiple key fields can be
added as tab separated list

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the
parent and child table must be passed with LlDbAddTable().

Example:

See chapter "Direct Print and Export From the Designer".

See also:

LlDbAddTable, LlDbAddTableSortOrder, LlPrintDbGetCurrentTable, LlPrint-
DbGetCurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlDbAddTableSortOrder

Syntax:

INT LlDbAddTableSortOrder(HLLJOB hJob, LPCTSTR pszTableID,

 LPCTSTR pszSortOrderID, LPCTSTR pszSortOrderDisplayName);

API Reference

138

Task:

Defines available sort orders for the tables added via LlDbAddTable(). Each
sorting has its unique ID that can be queried using
LlPrintDbGetCurrentTableSortOrder() at print time.

Parameter:

hJob: List & Label job handle

pszTableID: Table ID to which this sort order applies. Must be identical to the
ID passed in LlDbAddTable().

pszSortOrderID: Unique ID of the table sort order. It is returned by
LlPrintDbGetCurrentTableSortOrder() at print time.

pszSortOrderDisplayName: Name of the table sort order as displayed in the
Designer. If no name is given, the display name and the unique name are
identical.

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the table
must be passed with LlDbAddTable().

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDbAddTable(hJob, "Orders", NULL);

LlDbAddTableSortOrder(hJob, "Orders", "Name ASC", "Name [+]");

<... etc ...>

LlJobClose(hJob);

See also:

LlDbAddTable, LlDbAddTableRelation, LlPrintDbGetCurrentTable, LlPrint-
DbGetCurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlDbAddTableSortOrderEx

Syntax:

INT LlDbAddTableSortOrderEx(HLLJOB hJob, LPCTSTR pszTableID,

 LPCTSTR pszSortOrderID, LPCTSTR pszSortOrderDisplayName

 LPCTSTR pszField);

Function Reference

139

Task:

Defines available sort orders for the tables added via LlDbAddTable(). Each
sorting has its unique ID that can be queried using
LlPrintDbGetCurrentTableSortOrder() at print time. Additionally the fields that
are relevant for the sorting can be passed separated by tabs for further use in
the function LlGetUsedIdentifiers().

Parameter:

hJob: List & Label job handle

pszTableID: Table ID to which this sort order applies. Must be identical to the
ID passed in LlDbAddTable().

pszSortOrderID: Unique ID of the table sort order. It is returned by
LlPrintDbGetCurrentTableSortOrder() at print time.

pszSortOrderDisplayName: Name of the table sort order as displayed in the
Designer. If no name is given, the display name and the unique name are
identical.

pszField: List of fields that are relevant for the sorting (separated by tabs) if
they should be regarded in the function LlGetUsedIdentifiers().

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the
table must be passed with LlDbAddTable().

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDbAddTable(hJob, "Orders", NULL);

LlDbAddTableSortOrderEx(hJob, "Orders", "Name ASC", "Name [+]",

 "Orders.Name");

<... etc ...>

LlJobClose(hJob);

See also:

LlDbAddTableSortOrder, LlDbAddTable, LlDbAddTableRelation, LlPrintDbGet-
CurrentTable, LlPrintDbGetCurrentTableSortOrder, LlPrintDbGetCurrentTable-
Relation

LlDbSetMasterTable

Syntax:

INT LlDbSetMasterTable(HLLJOB hJob, LPCTSTR pszTableID);

API Reference

140

Task:

If the master data is passed as variables, List & Label needs to know which
table is the "master" table in order to be able to offer the suitable sub-tables in
the table structure window. If you set the master table name using this
method, all tables related to this table can be inserted at the root level of the
report container object.

Parameter:

hJob: List & Label job handle

pszTableID: ID of the table which is used as the "master" table. Must be
identical to the ID passed in LlDbAddTable().

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the table
must be passed with LlDbAddTable().

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDbAddTable(hJob, "Orders", NULL);

LlDbSetMasterTable(hJob, "Orders");

<... etc ...>

LlJobClose(hJob);

See also:

LlDbAddTable, LlDbAddTableRelation, LlPrintDbGetCurrentTable, LlPrint-
DbGetCurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlDebugOutput

Syntax:

void LlDebugOutput (INT nIndent, LPCTSTR pszText);

Task:

Prints the text in the debug window of the Debwin Tool or – depending on the
parameter passed to LlSetDebug() - to the log file.

Parameter:

nIndent: Indentation of the following line(s)

pszText: Text to be printed

Function Reference

141

Hints:

The indentation is very handy for tracing calls to sub-procedures, but you need
to make sure that every call with an indentation of +1 is matched by a call
with the indentation of -1!

Example:

HLLJOB hJob;

LlSetDebug(LL_DEBUG_CMBTLL);

LlDebugOutput(+1,"Get version number:");

hJob = LlJobOpen(0);

v = LlGetVersion(VERSION_MAJOR);

LlJobClose(hJob);

LlDebugOutput(-1,"...done");

prints the following to the debug screen:

Get version number:

 @LlJobOpen(0)=1

 @LlGetVersion(1)=20

 @LlJobClose(1)

...done

See also:

LlSetDebug, Debwin

LlDefineChartFieldExt

Syntax:

INT LlDefineChartFieldExt (HLLJOB hJob, LPCTSTR lpszName,

 LPCTSTR lpszCont, INT lPara, LPVOID lpPara);

Task:

Defines a chart field and its contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the field

lpszCont: Pointer to a string with the contents of the field

lPara: Field type (LL_TEXT, LL_NUMERIC, ...)

lpPara: For future extensions, must be NULL.

Return Value:

Error code

API Reference

142

Hints:

Please note the general hints in the section "Variables and Fields in List &
Label".

See also:

LlDefineChartFieldStart

LlDefineField

Syntax:

INT LlDefineField (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont);

Task:

Defines a list/table field and its contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the field

lpszCont: Pointer to a string with the contents of the field

Return Value:

Error code

Hints:

Please note the general hints in the section "Variables and Fields in List &
Label".

This function defines a text field and can be mixed with the other
LlDefineField...() functions.

LlDefineField(...) is identical to LlDefineFieldExt(..., LL_TEXT, NULL).

List & Label predefines the following fields:

Field Meaning

LL.CountDataThisPage Numerical, footer field, defined data
records per page

LL.CountData Numerical, footer field, defined data
records total

LL.CountPrintedDataThisPage Numerical, footer field,
printed data records per page

LL.CountPrintedData Numerical, footer field, printed data
records total

LL.FCountDataThisPage Numerical, footer field, defined data
records per page

Function Reference

143

LL.FCountData Numerical, footer field, defined data
records total

LL.FCountPrintedDataThisPage Numerical, footer field, printed data
records per page

LL.FCountPrintedData Numerical, footer field,
printed data records total

The difference between "defined" and "printed" data records is that the user
can apply a record filter to the table so that the "defined" numbers increase
with every data record sent from the program, but not necessarily the "printed"
ones.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineFieldStart(hJob);

LlDefineField(hJob, "Name", "Smith");

LlDefineField(hJob, "Forename", "George");

LlDefineFieldExt(hJob, "Residence", "Cambridge", LL_TEXT, NULL);

LlDefineFieldExt(hJob, "Postal Code", "*CB5 9NB*", LL_BARCODE_3OF9);

<... etc ...>

LlJobClose(hJob);

See also:

LlDefineFieldStart, LlDefineFieldExt, LlDefineFieldExtHandle

LlDefineFieldExt

Syntax:

INT LlDefineFieldExt (HLLJOB hJob, LPCTSTR lpszName,

 LPCTSTR lpszCont, INT lPara, LPVOID lpPara);

Task:

Defines a list/table field and its contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the field

lpszCont: Pointer to a string with the contents of the field

lPara: Field type (LL_TEXT, LL_NUMERIC, ...), if necessary combined with 'or'
(see below).

lpPara: For future extensions, must be NULL.

Return Value:

Error code

API Reference

144

Hints:

Please note the general hints in the section "Variables and Fields in List &
Label".

List & Label predefines the fields listed in LlDefineField().

lPara 'or'ed with LL_TABLE_FOOTERFIELD supplies field definitions only for the
list footer. The footer is dynamically linked to the list body and is suitable for,
e.g., dynamic calculations as the line for totals or sub-totals.

lPara 'or'ed with LL_TABLE_HEADERFIELD supplies field definitions only for
the list header.

lPara 'or'ed with LL_TABLE_GROUPFIELD supplies field definitions only for the
group.

lPara 'or'ed with LL_TABLE_GROUPFOOTERFIELD supplies field definitions
only for the group footer.

lPara 'or'ed with LL_TABLE_BODYFIELD supplies field definitions only for the
list body.

If none of these flags is used, the fields appear in all field selection dialogs in
the table object.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineFieldStart(hJob);

LlDefineField(hJob, "Name", "Smith");

LlDefineField(hJob, "Forename", "George");

LlDefineFieldExt(hJob, "Residence", "Cambridge", LL_TEXT, NULL);

LlDefineFieldExt(job, "Number of entries per page",

 "1", LL_TABLE_FOOTERFIELD Or LL_TEXT, NULL)

LlDefineFieldExt(hJob, "Postal code",

 "*CB5 9NB*", LL_BARCODE_3OF9);

LlDefineFieldExt(hJob, "Photo",

 "c:\\photos\\norm.bmp", LL_DRAWING);

<... etc ...>

LlJobClose(hJob);

See also:

LlDefineFieldStart, LlDefineField, LlDefineFieldExtHandle

LlDefineFieldExtHandle

Syntax:

INT LlDefineFieldExtHandle (HLLJOB hJob, LPCTSTR lpszName,

 HANDLE hContents, INT lPara, LPVOID lpPara);

Function Reference

145

Task:

Defines a list field and its (handle) contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the field

hContents: Handle to an object of type HMETAFILE, HENHMETAFILE, HICON
or HBITMAP

lPara: LL_DRAWING_HMETA, LL_DRAWING_HEMETA, LL_DRAWING_HICON
or LL_DRAWING_HBITMAP

lpPara: For further extensions, must be NULL.

Return Value:

Error code

Hints:

Please note the general hints in the section "Variables and Fields".

This function defines a text field and can be mixed with the other
LlDefineField...() functions.

List & Label predefines the fields listed in LlDefineField().

The metafile handle must be valid as long as it is needed, that is during the
entire layout definition or until after LlPrintFields() or LlPrint() has finished.

After use the handle can or should be deleted with the normal API function.

Example:

HLLJOB hJob;

HMETAFILE hMeta;

HDC hMetaDC;

INT i;

hMetaDC = CreateMetaFile(NULL); // Fieberkurve

selectObject(hMetaDC,GetStockObject(NULL_PEN));

Rectangle(hMetaDC, 0, 0, LL_META_MAXX, LL_METY_MAXY);

for (i = 0; i < 10; ++i)

{

 MoveTo(hMetaDC,0,MulDiv(i, LL_META_MAXY, 10));

 LineTo(hMetaDC,MulDiv(i, LL_META_MAXX, 100),

 MulDiv(i, LL_META_MAXY, 10);

}

MoveTo(hMetaDC, 0, MulDiv(((100*i) & 251) % 100, LL_META_MAXY,100));

for (i = 0; i < 10; ++i)

 LineTo(hMetaDC,MulDiv(i, LL_META_MAXX, 10),

 MulDiv(((100*i) & 251) % 100, LL_META_MAXY, 100));

hMeta = CloseMetaFile(hMetaDC);

hJob = LlJobOpen(0);

LlDefineFieldStart(hJob);

LlDefineField(hJob, "Name", "Normalverbraucher");

API Reference

146

LlDefineField(hJob, "Vorname", "Otto");

LlDefineFieldExt(hJob, "Ort", "Konstanz", LL_TEXT, NULL);

LlDefineFieldExtHandle(hJob, "Erfolgs-Chart", hMeta,

 LL_DRAWING_HMETA, NULL);

<... etc ...>

LlJobClose(hJob);

DeleteObject(hMeta);

See also:

LlDefineFieldStart, LlDefineField, LlDefineFieldExt

LlDefineFieldStart

Syntax:

INT LlDefineFieldStart (HLLJOB hJob);

Task:

Empties List & Label's internal field buffer in order to delete old field
definitions.

Parameter:

hJob: List & Label job handle

Return Value:

Error code

Hints:

The hints for LlDefineVariableStart() also apply to this function.

If the function LlPrintIsFieldUsed() is used in your application,
LlDefineFieldStart() may not be used after the call to LlPrint[WithBox]Start(),
otherwise the "used" flag will be reset and LlPrintIsFieldUsed() returns always
FALSE. We recommend the usage of LlGetUsedIdentifiers anyway.

Important: This function must not be called within the print loop!

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineFieldStart(hJob);

LlDefineField(hJob, "Name", "Smith");

LlDefineField(hJob, "forename", "George");

<... etc ...>

LlJobClose(hJob);

See also:

LlDefineField, LlDefineFieldExt, LlDefineFieldExtHandle

Function Reference

147

LlDefineLayout

Syntax:

INT LlDefineLayout (HLLJOB hJob, HWND hWnd, LPCTSTR lpszTitle,

 UINT nObjType, LPCTSTR lpszObjName);

Task:

Calls the interactive Designer that will be displayed as a modal pop-up
window overlapping your application window.

Parameter:

hJob: List & Label job handle

hWnd: Handle of the application window which will be disabled while the
Designer is being displayed.

lpszTitle: Window title

nObjType: Project type

Value Meaning

LL_PROJECT_LABEL for labels

LL_PROJECT_CARD for cards

LL_PROJECT_LIST for lists

if necessary combined with 'or' with:

Value Meaning

LL_FIXEDNAME Deletes the menu items 'new' and 'load'
(preferred: LlDesignerProhibitAction())

LL_NOSAVEAS Deletes the menu item 'save as' (preferred:
LlDesignerProhibitAction())

LL_NONAMEINTITLE No file name of the current project in List &
Label's main window title

lpszObjName: File name of the desired object

Return Value:

Error code

Hints:

The window handle is used to deactivate the calling program.

If this is not desired or possible, NULL can also be passed. In this case the
calling program is responsible for closing the layout editor, should the user
abort the main program. This is not recommended.

API Reference

148

When the List & Label layout Designer is minimized, the calling program is
also automatically minimized; when the Designer is subsequently restored,
List & Label is also restored.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "forename", "George");

LlDefineVariable(hJob, "PIN", "40|08150|77500",

 LL_BARCODE_EAN13, NULL);

LlDefineLayout(hJob, hWndMain, "Test", LL_PROJECT_LABEL,

 "test")

LlJobClose(hJob);

See also:

LlDesignerProhibitAction, LlSetOption, LlSetFileExtensions

LlDefineSumVariable

Syntax:

INT LlDefineSumVariable (HLLJOB hJob, LPCTSTR lpszName,

 LPCTSTR lpszCont);

Task:

Defines a sum variable's contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the variable

lpszCont: Pointer to a string with the contents of the variable

Return Value:

Error code

Hints:

The field content is interpreted as numerical value.

Use of this function usually conflicts with a user who can edit a layout, as the
sum variable will not have the value he expects.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

<... etc ...>

LlDefineSumVariable(hJob, "@Sum01", "14");

Function Reference

149

<... etc ...>

LlJobClose(hJob);

See also:

LlGetSumVariableContents

LlDefineVariable

Syntax:

INT LlDefineVariable (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR

 lpszCont);

Task:

Defines a variable of the type LL_TEXT and its contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the variable

lpszCont: Pointer to a string with the contents of the variable

Return Value:

Error code

Hints:

Please note the general hints in the section "Variables and Fields in List &
Label".

This function defines a text variable and can be mixed with the other
LlDefineVariable...() functions.

LlDefineVariable(...) is identical to LlDefineVariableExt(..., LL_TEXT, NULL).

List & Label predefines the following variables:

Field Meaning

LL.CountDataThisPage Numerical, footer field, defined data
records per page

LL.CountData Numerical, footer field, defined data
records total

LL.CountPrintedDataThisPage Numerical, footer field, printed data
records per page

LL.CountPrintedData Numerical, footer field, printed data
records total

LL.SortStrategy String, sort expression

LL.FilterExpression String, filter expression

API Reference

150

The difference between "defined" and "printed" data records is that the user
can apply a filter condition to the data records so that with every data record
sent from the program the "defined" numbers increase, but not necessarily the
"printed" ones (the latter values are only increased if the data record has been
printed, that is, matches the filter condition).

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "forename", "George");

LlDefineVariableExt(hJob, "residence", "Cambridge, LL_TEXT, NULL);

LlDefineVariableExt(hJob, "Postal Code", "*CB1*",

 LL_BARCODE_3OF9, NULL);

<... etc ...>

LlJobClose(hJob);

See also:

LlDefineVariableStart, LlDefineVariableExt, LlDefineVariableExtHandle, LlGet-
VariableContents, LlGetVariableType

LlDefineVariableExt

Syntax:

INT LlDefineVariableExt (HLLJOB hJob, LPCTSTR lpszName,

 LPCTSTR lpszCont, INT lPara, LPVOID lpPara);

Task:

Defines a variable and its contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the variable

lpszCont: Pointer to a string with the contents of the variable

lPara: Variable type (LL_TEXT, LL_NUMERIC, ...)

lpPara: For future extensions, must be NULL.

Return Value:

Error code

Hints:

Please note the general hints in the section "Variables and Fields in List &
Label".

This function can be mixed with the other LlDefineVariable...()-functions.

Function Reference

151

The variables predefined by List & Label are listed within the description of
LlDefineVariable().

Example:

hJob = LlJobOpen(0);

LlDefineVariableStart(hJob);

LlDefineVariableExt(hJob, "City", "Washington", LL_TEXT, NULL);

LlDefineVariableExt(hJob, "ZIP Code", "*90206*",

 LL_BARCODE_3OF9, NULL);

LlDefineVariableExt(hJob, "Photo", "i.bmp", LL_DRAWING, NULL);

LlJobClose(hJob);

See also:

LlDefineVariableStart, LlDefineVariable, LlDefineVariableExtHandle, LlGet-
VariableContents, LlGetVariableType

LlDefineVariableExtHandle

Syntax:

INT LlDefineVariableExtHandle (HLLJOB hJob, LPCTSTR lpszName,

 HANDLE hContents, INT lPara, LPVOID lpPara);

Task:

Defines a variable and its contents.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the variable

hContents: Handle to an object of type:HMETAFILE, HENHMETAFILE,HICON
or HBITMAP

lPara: LL_DRAWING_HMETA, LL_DRAWING_HEMETA, LL_DRAWING_HICON
or LL_DRAWING_HBITMAP

lpPara: For future extensions, must be NULL.

Return Value:

Error code

Hints:

Please note the general hints in the section "Variables and Fields in List &
Label".

This function can be mixed with the other LlDefineVariable...()-functions.

The handle must be valid as long as it is needed, that is during the entire
layout definition or until after LlPrintFields() or LlPrint() return.

After use the handle can or should be deleted with the normal API function.

API Reference

152

Example:

HLLJOB hJob;

HMETAFILE hMeta;

HDC hMetaDC;

INT i;

hMetaDC = CreateMetaFile(NULL); // curve

SelectObject(hMetaDC, GetStockObject(NULL_PEN));

Rectangle(hMetaDC, 0, 0, LL_META_MAXX, LL_META_MAXY);

for (i = 0; i < 10;++ i)

{

 MoveTo(hMetaDC, 0, MulDiv(i, LL_META_MAXY, 10));

 LineTo(hMetaDC, MulDiv(i, LL_META_MAXX, 100), MulDiv(,

LL_META_MAXY, 10);

}

MoveTo(hMetaDC, 0, MulDiv(((100*i) & 251) % 100, LL_META_MAXY, 100));

for (i = 0; i < 10;++ i)

 LineTo(hMetaDC, MulDiv(i, LL_META_MAXX, 10),

 MulDiv(((100*i) & 251) % 100, LL_META_MAXY, 100));

hMeta = CloseMetaFile(hMetaDC);

hJob = LlJobOpen(0);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "Forename", "George");

LlDefineVariableExtHandle(hJob, "Chart", hMeta,

 LL_DRAWING_META, NULL);

LlDefineVariableExt(hJob, "Postal code", "*CB5 4RB*",

 LL_BARCODE_3OF9, NULL);

<... etc ...>

LlJobClose(hJob);

DeleteObject(hMeta);

See also:

LlDefineVariableStart, LlDefineVariable, LlDefineVariableExt,
LlGetVariableContents, LlGetVariableType

LlDefineVariableStart

Syntax:

INT LlDefineVariableStart (HLLJOB hJob);

Task:

Empties List & Label's internal variable buffer in order to delete old definitions.

Parameter:

hJob: List & Label job handle

Return Value:

Error code

Function Reference

153

Hints:

Does not necessarily have to be called. However, as with every
LlDefineVariable...() the internal variable list is checked for a variable which is
already available with the same name and type, this can be somewhat
accelerated with this function. Otherwise you only need to redefine the
variables whose contents change as the old contents of the variable are " over-
written" ; the contents of the remaining variables remain the same.

If you use LlPrintIsVariableUsed(), LlDefineVariableStart() may not be called
after the invocation of LlPrint[WithBox]Start(), otherwise LlPrintIsVariableUsed()
will always return FALSE.

Important: This function must not be called within the print loop!

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "Forename", "George");

<...etc ...>

LlDefineVariable(hJob, "Forename", "James");

<... etc ...>

LlJobClose(hJob);

See also:

LlDefineVariable, LlDefineVariableExt, LlDefineVariableExtHandle,
LlGetVariableContents, LlGetVariableType

LlDesignerAddAction

Syntax:

INT LlDesignerAddAction(HLLJOB hJob, UINT nID, UINT nFlags,

 LPCTSTR pszMenuText, LPCTSTR pszMenuHierarchy,

 LPCTSTR pszTooltipText, UINT nIcon, LPVOID pvReserved);

Task:

Extends the Designer's menu and optionally the toolbar of the Designer. In
contrast to using the callback LL_CMND_MODIFYMENU a command button
with a selectable icon can be added to the toolbar here. This command must
be called before LlDefineLayout().

Parameter:

hJob: List & Label Job-Handle

nID: Menu-ID for the new action to be added. This ID is passed by the
callback LL_CMND_SELECTMENU, when the user selects the corresponding
menu item or toolbar button. User defined IDs should be in the range
between 10100 and 10999.

API Reference

154

nFlags: Combination (ORed) of the following flags:

Value Meaning

LLDESADDACTIONFLAG_ADD_TO
_TOOLBAR

Add a command button to the toolbar in
addition to the menu item.

LLDESADDACTION_MENUITEM_A
PPEND

The menu item is added behind the entry in
pszMenuHierarchy.

LLDESADDACTION_MENUITEM_I
NSERT

The menu item is added in front of the
entry pszMenuHierarchy.

As well as an optional Keycode as a Shortcut and a combination of the
following flags as modifiers:

Value Meaning

LLDESADDACTION_ACCEL_CONT
ROL

Keyboard shortcut is CTRL+Keycode.

LLDESADDACTION_ACCEL_SHIFT Keyboard shortcut is SHIFT+Keycode.

LLDESADDACTION_ACCEL_ALT Keyboard shortcut is ALT+Keycode.

LLDESADDACTION_ACCEL_VIRTK
EY

Should always be set.

pszMenuText:Menu text without a keyboard shortcut (this will be added
automatically). You can however, use the "&" symbol to allocate the shortcuts
for menu navigation. Use "." as a hierarchy separator to create submenu items.
For example, in order to create a Menu "Draft" with a sub-point "Invoices", use
"Draft.Invoices" as a menu text.

pszMenuHierarchy:Menu hierarchy of the new menu item. The description is
given in the form of "<Level>.<Level>…" whereby "Level" is always the 0-
based index of the menu entry. For example, to insert a new entry in the first
place in the "Edit" menu, use "1.0" and
LLDESADDACTION_MENUITEM_INSERT.

pszTooltipText:Text for the tooltip on the toolbar command button. Will only
be evaluated if the flag LLDESADDACTIONFLAG_ADD_TO_TOOLBAR is set.
May be NULL.

nIcon: Icon-ID for the command button. Will only be evaluated if the flag
LLDESADDACTIONFLAG_ADD_TO_TOOLBAR is set. Use the program
IconSelector.exe (in the Tools directory) to see the list of available icons with
their IDs.

pvReserved: For future extensions, must be NULL.

Function Reference

155

Return Value:

Error code

Hints:

To execute the actual action, the LL_CMND_SELECTMENU-Callback has to be
processed.

See also:

LlDefineLayout

LlDesignerFileOpen

Syntax:

INT LlDesignerFileOpen(HLLJOB hJob, LPCTSTR pszFileName,

 UINT nFlags);

Task:

Opens the specified project file when the Designer is open.

Parameter:

hJob: List & Label Job-Handle

pszFileName: Project file name including path.

nFlags: Combination (ORed) of a flag from the following two groups at any
one time:

Value Meaning

LL_DESFILEOPEN_OPEN_EXISTIN
G

File must already exist, otherwise an Error
Code will be returned.

LL_DESFILEOPEN_CREATE_-
ALWAYS

File will always be newly created. If file
already exists, then file content will be
deleted.

LL_DESFILEOPEN_CREATE_NEW File will always be newly created if not
already existing. If file already exists, an
error code will be returned.

LL_DESFILEOPEN_OPEN_ALWAYS If file exists, it will be opened, otherwise
new file will be created.

LL_DESFILEOPEN_OPEN_IMPORT Imports an existent file into an already
opened project.

Value Meaning

LL_DESFILEOPENFLAG_-
SUPPRESS_SAVEDIALOG

The currently opened project will be
automatically saved without user

API Reference

156

Value Meaning

interaction before loading a new project.

LL_DESFILEOPENFLAG_-
SUPPRESS_SAVE

The currently opened project will be closed
automatically without being saved. All
changes after the last save will therefore
be lost!

LL_DESFILEOPENFLAG_DEFAULT The currently opened project will be saved
or closed as selected by the user – if
necessary before the new project is loaded.

Return Value:

Error code

Hints:

The function can only be used within a designer event. Typical use is in
connection with LlDesignerAddAction() in order to automate certain
application workflows.

See also:

LlDesignerFileSave

LlDesignerFileSave

Syntax:

INT LlDesignerFileSave(HLLJOB hJob, UINT nFlags);

Task:

Saves the currently opened project file when the Designer is open.

Parameter:

hJob: List & Label Job-Handle

nFlags: For future extension, must be "0" (LL_DESFILESAVE_DEFAULT).

Return Value:

Error code

Hints:

The function can only be used within a designer event. Typical use is in
connection with LlDesignerAddAction() in order to automate certain
application workflows.

See also:

LlDesignerFileOpen

Function Reference

157

LlDesignerGetOptionString

Syntax:

INT LlDesignerGetOptionString(HLLJOB hJob, INT nMode,

 LPTSTR pszBuffer, UINT nBufSize);

Task:

Queries various settings when the Designer is open.

Parameter:

hJob: List & Label Job-Handle

nMode: Option index, see LlDesignerSetOptionString()

pszBuffer: Buffer for return value, may be NULL

nBufSize: Size of buffer

Return value:

Error code or buffer size needed, if pszBuffer is NULL.

Hints:

Valid values for the mode parameter can be found at the description of
LlDesignerSetOptionString().

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlDesignerSetOptionString

LlDesignerInvokeAction

Syntax:

INT LlDesignerInvokeAction(HLLJOB hJob, INT nMenuIndex);

Task:

Activates the action menu item if the Designer is open.

Parameter:

hJob: List & Label Job-Handle

nMenuIndex: Index of function. Available functions can be found in file
MENUID.TXT.

Return Value:

Error code

API Reference

158

Hints:

If the function is to be utilized, it must be used within a designer event.
Typical use is in connection with LlDesignerAddAction() in order to automate
certain application workflows.

See also:

LlDefineLayout, LlDesignerAddAction

LlDesignerProhibitAction

Syntax:

INT LlDesignerProhibitAction (HLLJOB hJob, INT nMenuIndex);

Task:

Hiding of menu items in the Designer (and their respective toolbar buttons).

Parameter:

hJob: List & Label job handle

nMenuIndex: Menu function index

The function index can have the following values:

Value Meaning

0 All function exclusions are deleted, the
menu item list is reset (default menu is
restored). This is automatically called by
LlJobOpen() and LlJobOpenLCID(). This
function needs to be used for several
LlDefineLayout() calls with different lock
entries, otherwise the lock entries will be
added.

LL_SYSCOMMAND_-
MINIMIZE

The Designer window cannot be minimized
(iconized).

LL_SYSCOMMAND_-
MAXIMIZE

The Designer window cannot be
maximized.

other The menu IDs of the deleted menus can be
given here. The IDs of the menu items in
List & Label can be found in the file
MENUID.TXT included in your package.

Return Value:

Error code

Function Reference

159

Hints:

If this function is used, it must be called before the function LlDefineLayout().

This call can be made several times in turn for different function index values
as the entries are added to a lock-entry list which is evaluated at the call of
LlDefineLayout(). They can even be called during the
LL_CMND_MODIFYMENU callback.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "Forename", "George");

LlDefineVariable(hJob, "PIN", "40|08150|77500", LL_BARCODE_EAN13,

NULL);

LlDesignerProhibitAction(hJob, LL_SYSCOMMAND_MAXIMIZE);

LlDesignerProhibitAction(hJob, LL_SYSCOMMAND_MINIMIZE);

LlDefineLayout(hJob, hWndMain, "Test", LL_PROJECT_LABEL, "test")

LlJobClose(hJob);

See also:

LlDefineLayout, LlDesignerProhibitEditingObject, LlDesignerProhibitFunction

LlDesignerProhibitEditingObject

Syntax:

INT LlDesignerProhibitEditingObject(HLLJOB Job, LPCTSTR pszObject);

Task:

Prohibits the editing of the passed object.

Parameter:

hJob: List & Label job-handle

pszObject: Object name

Return Value:

Error code

Hints:

With NULL or "" the list of prohibited objects will be deleted.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDesignerProhibitEditingObject(hJob, "MyText");

...

LlJobClose(hJob);

API Reference

160

See also:

LlDefineLayout, LlDesignerProhibitAction, LlDesignerProhibitFunction

LlDesignerProhibitFunction

Syntax:

INT LlDesignerProhibitFunction (HLLJOB hJob, LPCTSTR pszFunction);

Task:

Hides the given function in the formula wizard. Must be called before any
functions are evaluated.

Parameter:

hJob: List & Label job handle

pszFunction: Function name.

Return Value:

Error code

Hints:

If you pass NULL or an empty string, the list of functions to be hidden will be
reset.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlDesignerProhibitFunction(hJob, "");

LlDesignerProhibitFunction(hJob, "CStr$");

...

LlJobClose(hJob);

See also:

LlDefineLayout, LlDesignerProhibitAction, LlDesignerProhibitEditingObject

LlDesignerRefreshWorkspace

Syntax:

INT LlDesignerRefreshWorkspace(HLLJOB hJob);

Task:

Activates an update of all tool windows, menu items etc. in the Designer. Use
this function to ensure that the Designer immediately shows all the changes
made to the object model using DOM within the open Designer.

Function Reference

161

Parameter:

hJob: List & Label Job-Handle

Return code:

Error code

Hints:

This function can only be used within a designer event. It is typically used in
connection with LlDesignerAddAction().

See also:

LlDefineLayout, LlDesignerAddAction

LlDesignerSetOptionString

Syntax:

INT LlDesignerSetOptionString (HLLJOB hJob, INT nMode,

 LPCTSTR pszValue);

Task:

Defines various settings when the Designer is open.

Parameter:

hJob: List & Label Job-Handle

nMode: The following values are possible as function index:

LL_DESIGNEROPTSTR_PROJECTFILENAME

The name of the project currently opened. If you have created a new file
through an action, it can be named in this way. Otherwise corresponds to a
"Save as…".

LL_DESIGNEROPTSTR_ WORKSPACETITLE

Assigns the window title in the Designer. You can use the format place holder
%s within the text to show the project name.

LL_DESIGNEROPTSTR_ PROJECTDESCRIPTION

Assigns the project description which will also be shown in "Open file" dialog.

pszValue: new value

Return value:

Error code

See also:

LlDesignerGetOptionString

API Reference

162

LlDlgEditLineEx

Syntax:

INT LlDlgEditLineEx(HLLJOB Job, HWND hWnd, LPTSTR pszBuffer,

 UINT nBufSize, UINT nParaTypes, LPCTSTR pszTitle,

 BOOL bTable, LPVOID pReserved);

Task:

This function is only available in the Enterprise edition! Starts the List &
Label formula wizard independently of the Designer. This means that List &
Label formulas can also be used at points in the application that are
independent of printing.

Parameter:

hJob: List & Label job handle

hWnd: Window handle of the calling program

pszBuffer: Buffer for return value

nBufSize: Size of buffer

nParaTypes: Expected return type. One or several ORed
LL_FCTPARATYPE_... values

pszTitle: Window title. Note that the title will be preceded by the word "Edit".

bTable: Defines whether only variables (FALSE) or fields (TRUE) will be
available

pReserved: Reserved, must be NULL or empty ('').

Hints:

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Return value:

Error code

LlDomCreateSubobject

Syntax:

INT LlDomCreateSubobject(HLLDOMOBJ hDOMObj, INT nPosition,

 LPCTSTR pszType, PHLLDOMOBJ phDOMSubObj);

Task:

Creates a new subobject within the specified DOM list. Detailed application
examples can be found in chapter "DOM Functions".

Function Reference

163

Parameter:

hDomObj: DOM handle for the list

nPosition: Index (0-based) of the element to be inserted. All following
elements are moved back one position.

pszType: Desired element type, e.g. "Text", for creating a new text object in
the object list

phDOMSubObj: Pointer to DOM handle for return

Return value:

Error code

See also:

Chapter "DOM Functions"

LlDomDeleteSubobject

Syntax:

INT LlDomDeleteSubobject(HLLDOMOBJ hDOMObj, INT nPosition);

Task:

Deletes a subobject from the specified DOM list. Detailed application
examples can be found in chapter "DOM Functions".

Parameter:

hDomObj: DOM handle for the list

nPosition: Index (0-based) of the element to be deleted. All following
elements are moved forward one position.

Return value:

Error code

See also:

Chapter "DOM Functions"

LlDomGetObject

Syntax:

INT LlDomGetObject(HLLDOMOBJ hDOMObj, LPCTSTR pszName,

 PHLLDOMOBJ phDOMSubObj);

API Reference

164

Task:

Provides a subobject of the specified DOM object, and is used e.g. to request
the object list from the project. Detailed application examples can be found in
chapter "DOM Functions".

Parameter:

hDomObj: DOM handle for the "parent" object

pszName: Name of the desired subobject, e.g. "Objects"

phDOMSubObj: Pointer to DOM handle for return

Return value:

Error code

See also:

Chapter "DOM Functions"

LlDomGetProject

Syntax:

INT LlDomGetProject(HLLJOB hJob, PHLLDOMOBJ phDOMObj);

Task:

Provides the currently loaded project object. Can be used e.g. after
LlPrint(WithBox)Start, to change the project during printout with DOM
functions. In order to create new projects or to edit projects before printout,
use LlProjectOpen(), LlDomGetProject(), LlProjectSave() and LlProjectClose().
Detailed application examples can be found in chapter "DOM Functions".

Parameter:

hJob: List & Label job handle

phDOMSubObj: Pointer to DOM handle for return

Return value:

Error code

See also:

LlProjectOpen, LlProjectSave, LlProjectClose , chapter "DOM Functions"

LlDomGetProperty

Syntax:

INT LlDomGetProperty(HLLDOMOBJ hDOMObj, LPCTSTR pszName,

 LPTSTR pszBuffer, UINT nBufSize);

Function Reference

165

Task:

Returns the content of the specified property. Detailed application examples
can be found in chapter "DOM Functions".

Parameter:

hDomObj: DOM handle for the object to be queried

pszName: Name of the desired property, e.g. "Condition", for requesting the
appearance condition of an object.

pszBuffer: Buffer for the return value. Can be NULL (see notes)

nBufSize: Size of buffer

Return value:

Error code or required buffer size

Hints:

If pszBuffer is NULL, the return value is the length of the required buffer (in
TCHARS, so BYTEs for SBCS/MBCS and WCHARs for UNICODE) including the
string termination.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

Chapter "DOM Functions"

LlDomGetSubobject

Syntax:

INT LlDomGetSubobject(HLLDOMOBJ hDOMObj, INT nPosition,

 PHLLDOMOBJ phDOMSubObj);

Task:

Returns the specified subelement of the DOM list. Detailed application
examples can be found in chapter "DOM Functions".

Parameter:

hDomObj: DOM handle for the list to be queried

nPosition: Index (0-based) of the desired element

phDOMSubObj: Pointer to DOM handle for return

Return value:

Error code

API Reference

166

See also:

Chapter "DOM Functions"

LlDomGetSubobjectCount

Syntax:

INT LlDomGetSubobjectCount(HLLDOMOBJ hDOMObj, _LPINT pnCount);

Task:

Returns the number of elements in the specified DOM list. The number of
objects in the object list can be determined, for example. Detailed application
examples can be found in chapter "DOM Functions".

Parameter:

hDomObj: DOM handle for the list to be queried

pnCount: Pointer for return

Return value:

Error code

See also:

Chapter "DOM Functions"

LlDomSetProperty

Syntax:

INT LlDomSetProperty(HLLDOMOBJ hDOMObj, LPCTSTR pszName,

 LPCTSTR pszValue);

Task:

Sets the specified property to the passed value. Detailed application examples
can be found in chapter "DOM Functions".

Parameter:

hDomObj: DOM handle for the object to be altered

pszName: Name of the desired property, e.g. "Condition", for setting the
appearance condition of an object

pszValue: New value of the property

Return value:

Error code

See also:

Chapter "DOM Functions"

Function Reference

167

LlEnumGetEntry

Syntax:

HLISTPOS LlEnumGetEntry(HLLJOB hJob, HLISTPOS hPos,

 LPSTR pszNameBuf, UINT nNameBufsize, LPSTR pszContBuf,

 UINT nContBufSize, _LPHANDLE pHandle, _LPINT pType);

Task:

Returns the name and contents of a variable or (chart) field.

Parameter:

hJob: List & Label job handle

hPos: The handle of the current field iterator

pszNameBuf, nNameBufsize: Buffer where the name should be stored

pszContBuf, nContBufSize: Buffer where the contents should be stored.
pszContBuf can be NULL to ignore the contents string.

pHandle: Pointer to a handle where the handle value should be stored. Can
be NULL to ignore the handle value. See LlDefineVariableExtHandle() and
LlDefineFieldExtHandle().

pType: Pointer to an INT, in which the type (LL_TEXT, ...) will be stored. May
be NULL to ignore the type.

Return Value:

Error code

Hints:

During the LlEnum...() functions, a call to LlDefineVariableStart() or
LlDefineFieldStart() is prohibited!

The iterator functions can be used to enumerate variables and/or fields and to
get their names, contents and types.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Example:

The following example traverses the list of variables and prints all of them
(LL_TYPEMASK is the constant for all possible variable types):

HLISTPOS hPos = LlEnumGetFirstVar(hJob, LL_TYPEMASK);

while (hPos != NULL)

{

 TCHAR szName[64+1];

 TCHAR szContents[256+1];

 LlEnumGetEntry(hJob, hPos, szName, sizeof(szName), szContents,

 sizeof(szContents), NULL, NULL);

 printf("%s - %s\n",szName,szContents);

API Reference

168

 hPos = LlEnumGetNextEntry(hJob, hPos, LL_TYPEMASK);

}

See also:

LlEnumGetFirstVar, LlEnumGetFirstField, LlEnumGetFirstChartField,
LlEnumGetNextEntry

LlEnumGetFirstChartField

Syntax:

HLISTPOS LlEnumGetFirstChartField (HLLJOB hJob, UINT nFlags);

Task:

Returns an iterator for the first chart field. The name does not have to be
known, the chart fields are returned in the order in which they are declared to
List & Label.

Parameter:

hJob: List & Label job handle

nFlags: Flags for the allowed types of fields (to be 'or'ed):
LL_TEXT, LL_BOOLEAN, LL_BARCODE, LL_DRAWING, LL_NUMERIC,
LL_DATE, LL_HTML, LL_RTF, LL_TYPEMASK (to iterate all of them)

Return Value:

Iterator of first chart field, or NULL if no field exists.

Hints:

During the iteration, a call to LlDefineChartFieldStart() is prohibited!

See also:

LlEnumGetFirstVar, LlEnumGetFirstField, LlEnumGetNextEntry,
LlEnumGetEntry

LlEnumGetFirstField

Syntax:

HLISTPOS LlEnumGetFirstField (HLLJOB hJob, UINT nFlags);

Task:

Returns an iterator for the first field. The name does not have to be known,
the fields are returned in the order in which they are declared to List & Label.

Parameter:

hJob: List & Label job handle

Function Reference

169

nFlags: Flags for the allowed types of fields (to be 'or'ed):
LL_TEXT, LL_BOOLEAN, LL_BARCODE, LL_DRAWING, LL_NUMERIC,
LL_DATE, LL_HTML, LL_RTF, LL_TYPEMASK (to iterate all of them)

Return Value:

Iterator of first field, or NULL if no field exists.

Hints:

During the iteration, a call to LlDefineFieldStart() is prohibited!

See also:

LlEnumGetFirstVar, LlEnumGetNextEntry, LlEnumGetEntry

LlEnumGetFirstVar

Syntax:

HLISTPOS LlEnumGetFirstVar (HLLJOB hJob, UINT nFlags);

Task:

Returns an iterator for the first variable. The name does not have to be known,
the variables are returned in the order in which they are declared to List &
Label.

Parameter:

hJob: List & Label job handle

nFlags: Flags for the allowed types of fields (to be 'or'ed):
LL_TEXT, LL_BOOLEAN, LL_BARCODE, LL_DRAWING, LL_NUMERIC,
LL_DATE, LL_RTF, LL_HTML, LL_TYPEMASK (to iterate all of them)

Return Value:

Iterator of first variable, or NULL if no further variable exists.

Hints:

During the iteration, a call to LlDefineVariableStart() is prohibited!

Internal variables are not iterated.

See also:

LlEnumGetFirstField, LlEnumGetNextEntry, LlEnumGetEntry

LlEnumGetNextEntry

Syntax:

HLISTPOS LlEnumGetNextEntry (HLLJOB hJob, HLISTPOS hPos, UINT

nFlags);

API Reference

170

Task:

Returns the next field/variable (if any). The iteration starts with
LlEnumGetFirstVar() or LlEnumGetFirstField() and is continued with this
function.

Parameter:

hJob: List & Label job handle

hPos: Iterator of the current variable or field

nFlags: Flags for the allowed types of fields (to be 'or'ed):
LL_TEXT, LL_BOOLEAN, LL_BARCODE, LL_DRAWING, LL_NUMERIC,
LL_DATE, LL_RTF, LL_HTML

Return Value:

Iterator for the next variable/field, or NULL if no further variable/field exists.

Hints:

During the LlEnum...() functions, a call to LlDefineVariableStart() or
LlDefineFieldStart() is prohibited!

See also:

LlEnumGetFirstVar, LlEnumGetFirstField, LlEnumGetEntry

LlExprError

Syntax:

void LlExprError (HLLJOB hJob, LPTSTR lpBuffer, UINT nBuffer Size);

Task:

Returns the reason for the error in plain text.

Parameter:

hJob: List & Label job handle

lpBuffer: Address of buffer for error text

nBufferSize: Maximum number of characters to be copied

Return Value:

Error code

Hints:

The function must be called immediately after LlExprParse() returns an error.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Function Reference

171

Example:

See LlExprParse

See also:

LlExprParse, LlExprEvaluate, LlExprType, LlExprFree

LlExprEvaluate

Syntax:

INT LlExprEvaluate (HLLJOB hJOB, HLLEXPR lpExpr, LPTSTR lpBuffer,

 UINT nBufferSize);

Task:

Evaluates an expression.

Parameter:

hJob: List & Label job handle

lpExpr: The pointer returned by the corresponding LlExprParse()

lpBuffer: Address of buffer for calculated value

nBufferSize: Maximum number of characters to be copied

Return Value:

Error code

Hints:

The buffer is always filled with a zero-terminated string.

Depending on the type of result, the buffer contents are to be interpreted as
follows:

Type Meaning

LL_EXPRTYPE_STRING The buffer contents are the result string

LL_EXPRTYPE_DOUBLE The buffer contents are the corresponding
representation of the value, for pi e.g.
"3.141592". The value is always specified
with 6 decimal places.

LL_EXPRTYPE_DATE The buffer contains the corresponding
representation of the Julian value, for
example "21548263".

LL_EXPRTYPE_BOOL The buffer contains either the string "TRUE"
or "FALSE".

LL_EXPRTYPE_DRAWING The buffer contains the name of the
drawing variable/drawing field (!), not the
contents.

API Reference

172

LL_EXPRTYPE_BARCODE The buffer contains the value which would
be interpreted as the barcode.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Example:

See LlExprParse

See also:

LlExprParse, LlExprType, LlExprError, LlExprFree

LlExprFree

Syntax:

void LlExprFree (HLLJOB hJob, HLLEXPR lpExpr);

Task:

Releases the parsing tree created by LlExprParse().

Parameter:

hJob: List & Label job handle

lpExpr: The pointer returned from the corresponding LlExprParse()

Hints:

To avoid memory leaks, the function must be called when a tree returned by
LlExprParse() is no longer required.

Example:

See LlExprParse

See also:

LlExprParse, LlExprEvaluate, LlExprType, LlExprError

LlExprGetUsedVars

Syntax:

INT LlExprGetUsedVars(HLLJOB hJob, HLLEXPR lpExpr, LPSTR pszBuffer,

UINT nBufSize);

Task:

Returns the variables and fields (tab-separated) that were used in a formula
with LlExprParse().

Function Reference

173

Parameter:

hJob: List & Label job handle

lpExpr: The pointer returned by the corresponding LlExprParse()

pszBuffer: Buffer for the return value

nBufSize: Size of buffer

Hints:

Corresponds to "LlExprGetUsedVarsEx" with parameter bOrgName = TRUE.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlExprParse, LlExprEvaluate, LlExprType, LlExprError

LlExprGetUsedVarsEx

Syntax:

INT LlExprGetUsedVarsEx(HLLJOB hLlJob, HLLEXPR lpExpr, LPSTR

pszBuffer, UINT nBufSize, BOOL bOrgName);

Task:

Returns the variables and fields (tab-separated) that were used in a formula
with LlExprParse().

Parameter:

hJob: List & Label job handle

lpExpr: The pointer returned by the corresponding LlExprParse()

pszBuffer: Buffer for the return value

nBufSize: Size of buffer

bOrgName: TRUE: global field names, FALSE: localized field names

Hints:

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlExprParse, LlExprEvaluate, LlExprType, LlExprError

API Reference

174

LlExprParse

Syntax:

LPVOID LlExprParse (HLLJOB hJob, LPCTSTR lpExprText,

 BOOL bTableFields);

Task:

Tests the expression for correctness and constructs a function tree for this
expression.

Parameter:

hJob: List & Label job handle

lpExprText: Expression

bTableFields: TRUE: reference to fields and variables FALSE: reference to
variables

Return Value:

Pointer to an internal structure (parsing tree)

Hints:

If an error is signaled (Address = NULL) then you can query the error text with
LlExprError().

The variables defined with LlDefineVariable() can be integrated into the
expression if bTableFields is FALSE, otherwise the fields defined with
LlDefineField() are included in the expression.

If the expression is used for calculation several times, it is recommended that
you translate it once with LlExprParse() and then carry out the calculations,
releasing the tree at the end.

Example:

LPVOID lpExpr;

char lpszErrortext[128];

char lpszBuf[20];

Long lDateOne;

Long lDateTwo;

LlDefineVariable(hJob, "Date", "29.2.1964", LL_TEXT);

lpExpr = LlExprParse(hJob, "DateToJulian(DATE(Date))", FALSE);

if (lpExpr)

{

 if (LlExprType(hJob, lpExpr) != LL_EXPRTYPE_DOUBLE)

 {

 // something is wrong, must be numerical!

 }

 LlExprEvaluate(hJob, lpExpr, lpszBuf, sizeof(lpszBuf));

 lDateOne = atol(lpszBuf);

 // lDateOne now has the Julian date

 // 29.2.1964

 LlDefineVariable(hJob, "Date", "28.10.2013", LL_TEXT);

Function Reference

175

 LlExprEvaluate(hJob, lpExpr, lpszBuf, sizeof(lpszBuf));

 lDateTwo = atol(lpszBuf);

 // lDateTwo now has the Julian date

 LlExprFree(hJob, lpExpr);

}

else

{

 // Error!

 LlExprError(hJob, lpszErrortext, sizeof(lpszErrortext));

}

See also:

LlExprEvaluate, LlExprType, LlExprError, LlExprFree

LlExprType

Syntax:

INT LlExprType (HLLJOB hJOB, HLLEXPR lpExpr);

Task:

Evaluates the result type of the expression.

Parameter:

hJob: List & Label job handle

lpExpr: The pointer returned from the corresponding LlExprParse()

Return Value:

Type of result:

Value Meaning

LL_EXPRTYPE_STRING String

LL_EXPRTYPE_DOUBLE Numerical value

LL_EXPRTYPE_DATE Date

LL_EXPRTYPE_BOOL Boolean value

LL_EXPRTYPE_DRAWING Drawing

LL_EXPRTYPE_BARCODE Barcode

Example:

See LlExprParse

See also:

LlExprParse, LlExprEvaluate, LlExprError, LlExprFree

API Reference

176

LlGetChartFieldContents

Syntax:

INT LlGetChartFieldContents (HLLJOB hJob, LPCTSTR lpszName,

 LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns the contents of the corresponding chart field.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the chart field

lpszBuffer: Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code (LL_ERR_UNKNOWN_FIELD or 0)

Hints:

This function can be used in callback routines to ask for the contents of chart
fields.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlDefineChartFieldStart, LlDefineChartFieldExt, LlGetFieldType

LlGetDefaultPrinter

Syntax:

INT LlGetDefaultPrinter(LPTSTR pszPrinter, LLPUINT pnBufferSize,

 _PDEVMODE pDevMode, LLPUINT pnDevModeBufSize, UINT nOptions)

Task:

Returns the name of the default printer and a DEVMODE struct corresponding
to the default settings.

Parameter:

pszPrinter: Address of buffer for the printer name. May be NULL (see hints).

pnBufferSize: Size of the buffer (in TCHARs).

pDevMode: Address of buffer for the DEVMODE struct. May be NULL (see
hints)

pnDevModeBufSize: Size of the buffer (in bytes).

Function Reference

177

nOptions: Reserved, must be 0.

Return Value:

Error code

Hints:

If pszPrinter and pDevMode is NULL, the required buffer sizes are stored in
pnPrinterBufferSize and pnDevModeBufferSize.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlSetPrinterToDefault, LlSetPrinterInPrinterFile

LlGetDefaultProjectParameter

Syntax:

INT LlGetDefaultProjectParameter(HLLJOB hLlJob,

 LPCTSTR pszParameter, LPTSTR pszBuffer, INT nBufSize,

 _LPUINT pnFlags)

Task:

Returns the default value of a project parameter (see Project Parameters
chapter)

Parameter:

hJob: List & Label job handle

pszParameter: Parameter name. May be NULL (see hints)

pszBuffer: Address of buffer for contents. May be NULL (see hints)

nBufSize: Size of the buffer (in TCHARs).

pnFlags: Pointer to an UINT defining the type of the parameter (for valid
values see LlSetDefaultProjectParameter()). May be NULL if the value is not
required.

Return Value:

Error code or required buffer size

Hints:

If pszParameter is NULL, a semicolon separated list of all USER parameters is
returned.

If pszBuffer is NULL, the return value equals the size of the required buffer (in
TCHARS) including the termination.

API Reference

178

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlSetDefaultProjectParameter, LlPrintSetProjectParameter, LlPrintGetProject-
Parameter

LlGetErrortext

Syntax:

INT LlGetErrortext(INT nError, LPTSTR lpszBuffer, UINT nBufSize);

Task:

Provides a localized error message for the passed error code.

Parameter:

nError: Error code

lpszBuffer: Pointer to buffer in which the message is to be stored

nBufSize: Size of buffer

Return value:

Error code or required buffer size

Hints

This function can be used to display an error message. More frequent errors
are e.g. LL_ERR_EXPRESSION (-23) or LL_ERR_NOPRINTER (-11). If a job has
already been opened, the output will occur in the language of the respective
job, otherwise the language of the first language kit found will be used.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

LlGetFieldContents

Syntax:

INT LlGetFieldContents (HLLJOB hJob, LPCTSTR lpszName,

 LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns the contents of the corresponding (chart) field.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the field

Function Reference

179

lpszBuffer: Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code (LL_ERR_UNKNOWN_FIELD or 0)

Hints:

This function can be used in callback routines to ask for the contents of fields.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlDefineFieldStart, LlDefineFieldExt, LlDefineFieldExtHandle, LlGetFieldType

LlGetFieldType

Syntax:

INT LlGetFieldType (HLLJOB hJob, LPCTSTR lpszName);

Task:

Returns the type of the corresponding field.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the field

Return Value:

Field type (positive), or error code (negative)

Hints:

This function can be used in callback routines to ask for the type of fields.

See also:

LlDefineFieldStart, LlDefineFieldExt, LlDefineFieldExtHandle,
LlGetFieldContents

LlGetNotificationMessage

Syntax:

UINT LlGetNotificationMessage (HLLJOB hJob);

Task:

Returns the message number for callbacks.

API Reference

180

Parameter:

hJob: List & Label job handle

Return Value:

Current message number

Hints:

The default message number has the value of the function
RegisterWindowMessage("cmbtLLMessage");

The callback function has higher priority; if it is defined, no message is sent.

This function may not be used when List & Label's VCL, VBX or OCX control is
used.

Example:

HLLJOB hJob;

UINT wMsg;

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

v = LlGetNotificationMessage(hJob);

...

LlJobClose(hJob);

See also:

LlSetNotificationMessage, LlSetNotificationCallback

LlGetOption

Syntax:

INT_PTR LlGetOption (HLLJOB hJob, INT nMode);

Task:

Requests various switches and settings (see below) from List & Label.

Parameter:

hJob: List & Label job handle

nMode: Option index, see LlSetOption()

Return Value:

The value of the corresponding option

Hints:

The option indices are listed in the description of LlSetOption(). In addition,
there are some new or (with regard to the function LlSetOption()) modified
options:

Function Reference

181

LL_OPTION_LANGUAGE

Returns the currently selected language (See LlJobOpen() and
LlJobOpenLCID()).

LL_OPTION_HELPAVAILABLE

LOWORD: See LlSetOption()
HIWORD: Checks whether the help file is present: TRUE: usable, FALSE: not
usable (not present)

LL_OPTION_DEFPRINTERINSTALLED

Returns whether the operating system has a default printer.

Example:

HLLJOB hJob;

UINT nLanguage;

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

//

nLanguage = LlGetOption(hJob, LL_OPTION_LANGUAGE);

//

LlJobClose(hJob);

See also:

LlSetOption

LlGetOptionString

Syntax:

INT LlGetOptionString (HLLJOB hJob, INT nMode, LPTSTR pszBuffer,

 UINT nBufSize);

Task:

Requests various string settings (see below) from List & Label.

Parameter:

hJob: List & Label job handle

nMode: Option index, see LlSetOptionString()

pszBuffer: Pointer to a buffer where the requested value will be stored.

nBufSize: Size of the buffer

Return Value:

The value of the corresponding option

Hints:

The option indices are listed in the description of LlSetOptionString().

API Reference

182

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Example:

HLLJOB hJob;

TCHAR szExt[128];

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

//

LlGetOptionString(hJob, LL_OPTIONSTR_PRJEXT,

 szExt,sizeof(szExt));

//

LlJobClose(hJob);

See also:

LlSetOptionString

LlGetPrinterFromPrinterFile

Syntax:

INT LlGetPrinterFromPrinterFile (HLLJOB hJob, UINT nObjType,

 LPCTSTR pszObjName, INT nPrinter, LPTSTR pszPrinter,

 LLPUINT pnSizePrn, _PDEVMODE pDM, LLPUINT pnSizeDm);

Task:

Queries the printer configuration from the printer configuration file of List &
Label.

Parameter:

hJob: List & Label job handle

nObjType: LL_PROJECT_LABEL, LL_PROJECT_CARD or LL_PROJECT_LIST

pszObjName: File name of the project.

nPrinter: Index of the printer to be queried (0=first, 1=second) If you pass
values starting from 100 (e.g. in a loop until you receive LL_ERR_PARAMETER
as return value) you can query the printer for the various layout regions
(corresponding to their order being set in the Designer via 'Project > Page
Setup'). If the project contains only one printer, nPrinter must be -1.

pszPrinter: Address of buffer for printer name. If this pointer is NULL and
pnSizePrn is not NULL, the necessary size of the buffer will be stored in
*pnSizePrn.

pnSizePrn: Address of variable with buffer size (Size in characters, therefore
the doubled size in Bytes must be reserved for the Unicode API).

Function Reference

183

pDM: Address of buffer for the DEVMODE structure. If this pointer is NULL
and pnSizeDm non-NULL, the necessary size of the buffer will be stored in
*pnSizeDm.

pnSizeDm: Address of variable with buffer size.

Return Value:

Error code

Hints:

The DEVMODE structure is defined and described in the Windows API.

Due to the possibility to define layout regions in the Designer the practical
benefit of this function has been quite limited. We recommend using the LL
object model according to chapter "Using the DOM-API (Professional/Enter-
prise Edition Only)" to access the layout regions and the associated printers.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlSetPrinterInPrinterFile

LlGetProjectParameter

Syntax:

INT LlGetProjectParameter(HLLJOB hJob, LPCTSTR lpszProjectName,

 LPCTSTR lpszParameter, LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns the value of the project parameter for the given project file. If the
project parameter contains a formula, it is returned as is without being
evaluated.

Parameter:

hJob: List & Label Job-Handle

lpszProjectName: Pointer to a string with the project name

lpszParameter: Pointer to a string with the parameter name

lpszBuffer Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code

API Reference

184

Example:

HLLJOB hJob;

TCHAR Buffer[1024];

hJob = LlJobOpen(0);

LlSetDefaultProjectParameter(hJob, "QueryString",

 "SELECT * FROM PRODUCTS", LL_PARAMETERFLAG_SAVEDEFAULT);

// call up designer

…

// then before print starts

LlGetProjectParameter(hJob, "c:\\repository\\report.lst",

"QueryString", Buffer, 1024);

<... etc ...>

LlJobClose(hJob);

Hints:

This API is especially useful if the project parameter is queried before printing
to offer report parametrization to the user.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlPrintIsVariableUsed, LlPrintIsChartFieldUsed, LlPrintIsFieldUsed

LlGetSumVariableContents

Syntax:

INT LlGetSumVariableContents (HLLJOB hJob, LPCTSTR lpszName,

 LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns the contents of the corresponding sum variable.

Parameter:

hJob: Job handle

lpszName: Pointer to a string with the name of the sum variable.

lpszBuffer: Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code (LL_ERR_UNKNOWN_FIELD or 0)

Hints:

This function can be used in callback routines to ask for the contents of sum
variables.

Function Reference

185

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlDefineSumVariable, LlGetUserVariableContents, LlGetVariableContents

LlGetUsedIdentifiers

Syntax:

INT LlGetUsedIdentifiers(HLLJOB hJob, LPCTSTR lpszProjectName,

 LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns a list of variables, fields and chart fields that are actually used within
the given project file, in order to increase performance, as only these values
need to be provided.

Parameter:

hJob: List & Label Job-Handle

lpszProjectName: Pointer to a string with the project name

lpszBuffer Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code

Hints:

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlGetUsedIdentiefersEx

LlGetUsedIdentifiersEx

Syntax:

INT LlGetUsedIdentifiersEx(HLLJOB hJob, LPCTSTR lpszProjectName,

 UINT nIdentifierTypes, LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns a list of variables, fields and chart fields that are actually used within
the given project file, in order to increase performance, as only these values
need to be provided.

API Reference

186

Parameter:

hJob: List & Label Job-Handle

lpszProjectName: Pointer to a string with the project name

nIdentifierTypes Identifier types that shall be considered. The values can be
combined with OR:

Value Meaning

LL_USEDIDENTIFIERSFLAG
_VARIABLES

Variables

LL_USEDIDENTIFIERSFLAG
_FIELDS

Fields

LL_USEDIDENTIFIERSFLAG
_CHARTFIELDS

Chart fields

LL_USEDIDENTIFIERSFLAG
_TABLES

Tables (see LlDbAddTable)

LL_USEDIDENTIFIERSFLAG
_RELATIONS

Relations (see LlDbAddTableRelation)

lpszBuffer Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code

Hints:

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlGetUsedIdentiefers

LlGetUserVariableContents

Syntax:

INT LlGetUserVariableContents (HLLJOB hJob, LPCTSTR lpszName,

 LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns the contents of the corresponding user variable.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the sum variable.

Function Reference

187

lpszBuffer: Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code (LL_ERR_UNKNOWN_FIELD or 0)

Hints:

This function can be used in callback routines to ask for the contents of user
variables.

The variable type can be requested with LlGetVariableType() or
LlGetFieldType().

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlGetSumVariableContents, LlGetVariableContents

LlGetVariableContents

Syntax:

INT LlGetVariableContents (HLLJOB hJob, LPCTSTR lpszName,

 LPTSTR lpszBuffer, UINT nBufSize);

Task:

Returns the contents of the corresponding variable.

Parameter:

hJob: Job handle

lpszName: Pointer to a string with the name of the variable

lpszBuffer: Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code (LL_ERR_UNKNOWN or 0)

Hints:

This function can be used in callback routines to ask for the contents of
variables.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

API Reference

188

See also:

LlDefineVariableStart, LlDefineVariableExt, LlDefineVariableExtHandle, LlGet-
VariableType

LlGetVariableType

Syntax:

INT LlGetVariableType (HLLJOB hJob, LPCTSTR lpszName);

Task:

Returns the type of the corresponding variable.

Parameter:

hJob: List & Label job handle

lpszName: Pointer to a string with the name of the variable

Return Value:

Variable type (positive), or error code (negative)

Hints:

This function can be used in callback routines to ask for the type of variables.

See also:

LlDefineVariableStart, LlDefineVariableExt, LlDefineVariableExtHandle,
LlGetVariableContents

LlGetVersion

Syntax:

INT LlGetVersion(INT nCmd);

Task:

Returns the version number of List & Label.

Parameter:

Value Meaning

LL_VERSION_MAJOR (1) Returns the main version number

LL_VERSION_MINOR (2) Returns the minor version number, for
example 1, (1 means 001 as the sub-
version has three digits).

Return Value:

See parameter

Function Reference

189

Example:

int v;

v = LlGetVersion(VERSION_MAJOR);

LlJobClose

Syntax:

void LlJobClose (HLLJOB hJob);

Task:

Releases the internal variables, frees resources etc.

Parameter:

hJob: List & Label job handle

Hints:

This function should be called at the end (coupled with LlJobOpen() or
LlJobOpenLCID()), i.e. after using the List & Label DLL or when ending your
program.

Example:

HLLJOB hJob;

hJob = LlJobOpen(1);

LlDefineVariableStart(hJob);

<... etc ...>

LlJobClose(hJob);

See also:

LlJobOpen, LlJobOpenLCID

LlJobOpen

Syntax:

HLLJOB LlJobOpen (INT nLanguage);

Task:

Initializes internal variables and resources of the DLL for a calling program.
Almost all DLL commands require the return value of this function as the first
parameter.

Parameter:

nLanguage: Chosen language for user interactions (dialogs)

Value Meaning

CMBTLANG_DEFAULT Default language (use settings in Windows)
For other languages see header file
declarations

API Reference

190

CMBTLANG_GERMAN German

CMBTLANG_ENGLISH English

Further constants can be found in your declaration file.

If this parameter is "or"ed with the constant LL_JOBOPENFLAG_NOLLXPRE-
LOAD, no List & Label extensions will be preloaded.

Return Value:

A handle which is required as a parameter for most functions in order to have
access to application-specific data.

A value less than 0 shows an error.

Hints:

For ease of maintenance, we suggest putting global settings in one place,
immediately after the LlJobOpen() call (dialog design, callback modes,
expression mode, ...).

The C?LL20.DLL requires the language-dependent components which are
stored in a separate DLL, e.g. C?LL2000.LNG or C?LL2001.LNG. They are
loaded depending on the language setting. See also chapter 1.

If List & Label is no longer required, then the job should be released with the
function LlJobClose() to give the DLL a chance to release the internal variables
for this job.

Many additional language kits are available. Ask our sales department for
further information or have a look at our web site at www.combit.net. The
language IDs appended to the file name are a hex representation of the
CMBTLANG_xxxx language codes found in the header (*.H, *.BAS, *.PAS, ...)
file.

Example:

HLLJOB hJob;

hJob = LlJobOpen(CMBTLANG_ENGLISH);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "forename", "George");

<... etc ...>

LlJobClose(hJob);

See also:

LlJobOpenLCID, LlJobClose, LlSetOption, LlDesignerProhibitAction, LlSetFile-
Extensions

http://www.combit.net/

Function Reference

191

LlJobOpenLCID

Syntax:

HLLJOB LlJobOpenLCID (_LCID nLCID);

Task:

See LlJobOpen().

Parameter:

nLCID: Windows locale ID for user interactions (dialogs)

Return Value:

See LlJobOpen.

Hints:

Calls LlJobOpen() with the respective CMBTLANG_... value.

Example:

HLLJOB hJob;

hJob = LlJobOpenLCID(LOCALE_USER_DEFAULT);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "Name", "Smith");

LlDefineVariable(hJob, "forename", "George");

<... etc ...>

LlJobClose(hJob);

See also:

LlJobOpen, LlJobClose, LlSetOption, LlDesignerProhibitAction, LlSetFile-
Extensions

LlJobStateRestore

Syntax:

INT LlJobStateRestore(HLLJOB hLlJob, _PISTREAM pStream,UINT nFlags);

Task:

This API is used e.g. by the .NET DesignerControl to restore the state of a job
previously saved on one machine on a different other machine. Depending on
the flags passed, the variables, fields and database structure are deserialized
from the stream. Thus, a following call to LlDefineLayout() offers the
structures read from the stream in the Designer.

Parameter:

hJob: List & Label job handle

pStream: Stream that was created by a preceeding call to LlJobStateSave().
The stream format is proprietary and may change anytime without notice.

API Reference

192

nFlags: Combination of LL_JOBSTATEFLAG_... values. They determine which
values are read from the stream (variables, fields, chart fields, database
structure, dictionaries, other job settings). To deserialize all available
information, use LL_JOBSTATEFLAG_ALL.

Return Value:

Error code

See also:

LlJobStateSave

LlJobStateSave

Syntax:

INT LlJobStateRestore(HLLJOB hLlJob, _PISTREAM pStream,UINT nFlags,

 bool bPacked);

Task:

This API is used e.g. by the .NET DesignerControl to save the state of a job.
Depending on the flags passed, the variables, fields and database structure
are serialized to the stream.

Parameter:

hJob: List & Label job handle

pStream: Serialization stream. The stream format is proprietary and may
change anytime without notice.

nFlags: Combination of LL_JOBSTATEFLAG_... values. They determine which
values are written to the stream (variables, fields, chart fields, database
structure, dictionaries, other job settings). To serialize all available information,
use LL_JOBSTATEFLAG_ALL.

bPacked: Determines if the stream content should be packed.

Return Value:

Error code

See also:

LlJobStateRestore

LlLocAddDesignLCID

Syntax:

INT LlLocAddDesignLCID(HLLJOB hJob, LCID nLCID);

Function Reference

193

Task:

Adds a localization language to the project. For all added languages
translations can be provided via LlLocAddDictionaryEntry().

Parameter:

hJob: List & Label job handle

nLCID: Windows locale ID. The locale ID passed with the first call will be
considered as the base language. All translations that will be provided via
LlLocAddDictionaryEntry() need to use this language for the dictionary keys. If
nLCID is 0, all languages will be removed from the list of localization locale
IDs.

Return Value:

Error code

See also:

LlLocAddDictionaryEntry

LlLocAddDictionaryEntry

Syntax:

INT LlLocAddDictionaryEntry(HLLJOB hJob, LCID nLCID, LPCTSTR pszKey,

 LPCTSTR pszValue, UINT nType);

Task:

Adds a translation pair to one of the dictionaries. The dictionaries allow the
localisation of project resp. Designer items.

Parameter:

hJob: List & Label job handle

nLCID: Windows locale ID specifing the dictionary to which the translation
shall be added. This dictionary must already have been declared via
LlLocAddDesignLCID().

pszKey: Key for the dictionary (original text in the base language).

pszValue: Translated text for the dictionary.

nType: Dictionary type.

Value Meaning

LL_DICTIONARY_TYPE_STATIC Static (fixed) text

LL_DICTIONARY_TYPE_IDENTIFIER Name of field or variable

LL_DICTIONARY_TYPE_TABLE Table name

LL_DICTIONARY_TYPE_RELATION Relation name

API Reference

194

Value Meaning

LL_DICTIONARY_TYPE_SORTORDER Sortorder name

Return Value:

Error code

Hints:

Use this function to use the same project definition file for various
localizations. After having added languages via LlLocAddDictionaryEntry() the
Designer toolbar will offer a button for choosing the language.
LL_DICTIONARY_TYPE_STATIC allows the localization of static text by using
the Translate$ Designer function including Intellisense support. The static text
may contain up to three placeholders which are marked as {0}, {1} and {2}.

At print time the used language will be automatically set according to the
thread locale ID (which is the system language by default). If you want to set a
specific language as the default, use LL_OPTION_LCID. This default setting
can be overruled by the end-user via the Designer.

For clean up purposes, set pszKey and pszValue to NULL and nType to 0. This
will delete all dictionary entries from all dictionary types.

Example:

HLLJOB hJob;

hJob = LlJobOpen(CMBTLANG_DEFAULT);

// Add languages

LlLocAddDesignLCID(hJob, 9); // English as base language

LlLocAddDesignLCID(hJob, 7); // German as translation language

// Add translations

LlLocAddDictionaryEntry(hJob, 7, "ArticleNumber", "Artikelnummer",

 LL_DICTIONARY_TYPE_IDENTIFIER);

LlLocAddDictionaryEntry(hJob, 7, "Price", "Preis",

 LL_DICTIONARY_TYPE_IDENTIFIER);

LlLocAddDictionaryEntry(hJob, 7, "Page {0} of {1}", "Seite {0} von

{1}",

 LL_DICTIONARY_TYPE_STATIC);

LlDefineVariableStart(hJob);

LlDefineVariable(hJob, "ArticleNumber", "12345");

LlDefineVariable(hJob, "Price", "123");

// Invoke Designer etc.

...

LlJobClose(hJob);

See also:

LlLocAddDesignLCID, LL_OPTION_LCID

Function Reference

195

LlPreviewDeleteFiles

Syntax:

INT LlPreviewDeleteFiles (HLLJOB hJob, LPCTSTR lpszObjName,

 LPCTSTR lpszPath);

Task:

Deletes the temporary file(s) which have been created by the preview print.

Parameter:

hJob: List & Label job handle

lpszObjName: Valid file name without pat

lpszPath: Valid path of the preview files ending with a backslash "\".

Return Value:

Error code

Hints:

Should always be called after LlPreviewDisplay(), as the preview files are
generally only valid momentarily.

Of course, if you want to archive, send or print them at a later time, this
should NOT be called.

See also:

LlPrintStart, LlPrintWithBoxStart, LlPreviewDisplay, LlPrintEnd, LlPreviewSet-
TempPath

LlPreviewDisplay

Syntax:

INT LlPreviewDisplay (HLLJOB hJob, LPCTSTR lpszObjName,

 LPCTSTR lpszPath, HWND hWnd);

Task:

Starts the preview window.

Parameter:

hJob: List & Label job handle

lpszObjName: Valid file name without path name!

lpszPath: Valid path of the preview files ending with a backslash "\".

hWnd: Window handle of the calling program

Return Value:

Error code

API Reference

196

Hints:

The preview is a window that can be started independently of the Designer
and shows the data that has been printed by the preview print process.

LlPreviewDisplay() calls LlPreviewDisplayEx() with LL_PRVOPT_PRN_ASK-
PRINTERIFNEEDED.

See also:

LlPrintStart, LlPrintWithBoxStart, LlPreviewDeleteFiles, LlPrintEnd,
LlPreviewSetTempPath, LlPreviewDisplayEx

LlPreviewDisplayEx

Syntax:

INT LlPreviewDisplayEx (HLLJOB hJob, LPCTSTR lpszObjName,

 LPCTSTR lpszPath, HWND hWnd, UINT nOptions, LPVOID pOptions);

Task:

Starts the preview. Additional options can define the behavior.

Parameter:

hJob: List & Label job handle

lpszObjName: Valid file name without path name!

lpszPath: Valid path of the preview files ending with a backslash "\".

hWnd: Window handle of the calling program

nOptions:

Value Meaning

LL_PRVOPT_PRN_-
USEDEFAULT

Preview uses the system's default printer

LL_PRVOPT_PRN_-
ASKPRINTERIFNEEDED

If the printer that is stored in the preview
file (i.e. the printer that has been used for
the preview print process) is not found in
the current computer's printers, a printer
dialog is shown so that the user can select
the printer.

LL_PRVOPT_PRN_-
ASKPRINTERALWAYS

A printer dialog will allow the user to
choose his default printer for the preview.

pOptions: Reserved, set to NULL or "".

Return Value:

Error code

Function Reference

197

Hints:

The preview is a window that can be started independently of the Designer. It
shows the data printed by the preview print process.

If lpszPath is empty, the path of the project file is used.

See also:

LlPrintStart, LlPrintWithBoxStart, LlPreviewDeleteFiles,
LlPreviewSetTempPath, LlPreviewDisplay

LlPreviewSetTempPath

Syntax:

INT LlPreviewSetTempPath (HLLJOB hJob, LPCTSTR lpszPath);

Task:

Sets a temporary path for the print preview file(s). Especially useful for
applications running in a network environment.

Parameter:

hJob: List & Label job handle

lpszPath: Valid path with a concluding backslash "\"

Return Value:

Error code

Hints:

The preview file(s) will be stored in this path. The file name is the project's
name, the file extension is ".LL". The preview file can be archived, sent or
viewed whenever needed.

If the path is NULL or "", the path in which the project file is stored is taken.

This command must be called before the first call to LlPrint() in the print loop.

See also:

LlPrintStart, LlPrintWithBoxStart

LlPrint

Syntax:

INT LlPrint (HLLJOB hJob);

Task:

Output of all objects on the printer.

API Reference

198

Parameter:

hJob: List & Label job handle

Return Value:

Error code

Hints:

Normal objects and the header of a table object (see option LL_OPTION_-
DELAYTABLEHEADER) are printed. A table object has to be filled with calls of
LlPrintFields() afterwards. LlPrint is responsible for a page break.

Label/card projects: As long as LlPrint() returns LL_WRN_REPEAT_DATA,
LlPrint() must be called again, so objects that have caused a page break must
be printed again on the next label /page.

This function is described explicitly in the chapter "Further Programming
Basics"

See also:

LlPrintFields, LlPrintEnableObject

LlPrintAbort

Syntax:

INT LlPrintAbort (HLLJOB hJob);

Task:

Aborts the print (an incomplete page will remain incomplete or may not be
printed).

Parameter:

hJob: List & Label job handle

Return Value:

Error code

Hints:

Is necessary to abort the print by code if LlPrintWithBoxStart() is not used and
print abortion is necessary.

The difference to the 'normal' end, i.e. no longer having to call LlPrint() or
LlPrintFields() is that data which is still in the printer driver is discarded, so that
the print may be ended halfway through a page.

The LlPrint...() calls following this call will return LL_USER_ABORTED, so your
print loop will be ended automatically.

Function Reference

199

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

if (LlPrintStart(hJob, LL_PROJECT_LABEL, "test",

 LL_PRINT_NORMAL) == 0)

{

 for all data records

 {

 <... etc...>

 if (bDataError)

 LlPrintAbort(hJob);

 }

 LlPrintEnd(hJob);

}

else

 MessageBox(NULL, "error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintEnd

LlPrintCopyPrinterConfiguration

Syntax:

INT LlPrintCopyPrinterConfiguration (HLLJOB hJob,

 LPCTSTR lpszFilename, INT nFunction);

Task:

Allows saving and restoration of the printer configuration file.

Parameter:

hJob: List & Label job handle

lpszFilename: File name of the printer configuration file

nFunction: Action

Action Meaning

LL_PRINTERCONFIG_SAVE Saves the printer configuration file of the
currently opened project in a file with the
name lpszFilename.

LL_PRINTERCONFIG_-
RESTORE

Copies the previously saved configuration
file (created with
LL_PRINTERCONFIG_SAVE) back to the
current project.

Return Value:

Error code (always 0)

Hints:

It is important that LL_PRINTERCONFIG_RESTORE is called before(!) LlPrint()!

API Reference

200

Example:

The following principle should be used for hand-made copies on a temporary
printer, that is, a user can choose to temporarily change the printer using the
printer dialog box, and choose multiple copies. Usually the second and
following passes would print to the default printer, which is not intended.

for each copy

{

 LlPrintWithBoxStart(...)

 if (first copy)

 {

 LlPrintOptionsDialog(...);

 LlPrintCopyPrinterConfiguration("curcfg.~~~",

 LL_PRINTERCONFIG_SAVE);

 }

 else

 {

 LlPrintCopyPrinterConfiguration("curcfg.~~~",

 LL_PRINTERCONFIG_RESTORE);

 }

 .. LlPrint(), LlPrintFields(), ...

}

See also:

LlPrintStart, LlPrintWithBoxStart, LlSetPrinterToDefault, LlPrintStart, LlPrint-
WithBoxStart, LlSetPrinterInPrinterFile, LlGetPrinterFromPrinterFile, LlSet-
PrinterDefaultsDir

LlPrintDbGetRootTableCount

Syntax:

INT LlPrintDbGetRootTableCount(HLLJOB hJob);

Task:

Returns the number of tables at the root level. Necessary to correctly display a
progress bar.

Parameter:

hJob: List & Label job handle

Return Value:

Number of tables

Hints:

See the hints in chapter "Printing Relational Data".

See also:

LlDbAddTable, LlDbAddTableRelation, LlDbAddTableSortOrder, LlPrintDbGet-
CurrentTable, LlPrintDbGetCurrentTableSortOrder, LlPrintDbGetCurrentTable-
Relation

Function Reference

201

LlPrintDbGetCurrentTable

Syntax:

INT LlPrintDbGetCurrentTable(HLLJOB hJob, LPTSTR pszTableID,

 UINT nTableIDLength, BOOL bCompletePath);

Task:

This function returns the table that is currently printed/filled.

Parameter:

hJob: List & Label job handle

pszTableID: Buffer in which the string is to be stored

nTableIDLength: Size of buffer.

bCompletePath: If true, the complete table hierarchy will be returned, e.g.
"Orders > OrderDetails". If false, only the table name (e.g. "OrderDetails") is
returned.

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data".

See also:

LlDbAddTable, LlDbAddTableRelation, LlDbAddTableSortOrder, LlPrintDbGet-
CurrentTableSortOrder, LlPrintDbGetCurrentTableRelation

LlPrintDbGetCurrentTableFilter

Syntax:

INT LlPrintDbGetCurrentTableFilter(HLLJOB hJob,

 PVARIANT pvFilter, PVARIANT pvParams);

Task:

This function returns the current table filter in data source native syntax. The
translation has to be performed in the LL_QUERY_EXPR2HOSTEXPRESSION
callback. This callback is triggered for each part of the filter expression that is
used in the Designer.

Parameter:

hJob: List & Label job handle

pvFilter: This parameter receives the translated filter expression. As usual for
VARIANTs, it must be initialized before (VariantInit()) and freed after use
(VariantClear()).

API Reference

202

pvParams: If the filter expression uses parameters (see callback
documentation), this argument receives a VARIANTARRAY with the parameter
values. As usual for VARIANTs, it must be initialized before (VariantInit()) and
and freed after use (VariantClear()).

Return Value:

Error code

See also:

LlDbAddTable, LL_QUERY_EXPR2HOSTEXPRESSION

LlPrintDbGetCurrentTableRelation

Syntax:

INT LlPrintDbGetCurrentTableRelation(HLLJOB hJob,

 LPTSTR pszRelationID, UINT nRelationIDLength);

Task:

This function returns the current table relation to be printed.

Parameter:

hJob: List & Label job handle

pszRelationID: Buffer in which the string is to be stored.

nRelationIDLength: Size of buffer.

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data".

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlDbAddTable, LlDbAddTableRelation, LlDbAddTableSortOrder, LlPrintDbGet-
CurrentTable, LlPrintDbGetCurrentTableSortOrder

LlPrintDbGetCurrentTableSortOrder

Syntax:

INT LlPrintDbGetCurrentTableSortOrder(HLLJOB hJob,

 LPTSTR pszSortOrderID, UINT nSortOrderIDLength);

Function Reference

203

Task:

This function returns the current table sort order to be printed. If multiple
(stacked) sortings are supported (see LlDbAddTableEx()), a tab separated list is
returned.

Parameter:

hJob: List & Label job handle

pszSortOrderID: Buffer in which the string is to be stored.

nSortOrderIDLength: Size of buffer.

Return Value:

Error code

Hints:

See the hints in chapter "Printing Relational Data".

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlDbAddTable, LlDbAddTableRelation, LlDbAddTableSortOrder, LlPrintDbGet-
CurrentTable, LlPrintDbGetCurrentTableRelation

LlPrintDeclareChartRow

Syntax:

INT LlPrintDeclareChartRow (HLLJOB hJob, UINT nFlags);

Task:

This function is used to inform the chart objects contained in the project that
data is available.

Parameter:

hJob: List & Label job handle

nFlags: Specifies the chart type for which data is available

Return Value:

Error code

Hints:

The following flags may be used with this function:

API Reference

204

LL_DECLARECHARTROW_FOR_OBJECTS: informs chart objects that data is
available.

LL_DECLARECHARTROW_FOR_TABLECOLUMNS: informs chart objects
contained in table columns that data is available.

Please note the hints in the chart chapter of this manual.

This call does not actually print the objects, but only tells them to store the
current data. Only a call to LlPrint() (chart objects) or LlPrintFields() (charts in
table columns) actually prints the charts.

Example:

// while data to put into chart object...

 ... LlDefineChartFieldExt(...);

 LlPrintDeclareChartRow(hJob, LL_DECLARECHARTROW_FOR_OBJECTS);

// now print chart object

ret = LlPrint();

See also:

LlDefineChartFieldExt, LlDefineChartFieldStart

LlPrintDidMatchFilter

Syntax:

INT LlPrintDidMatchFilter (HLLJOB hJob);

Task:

Specifies whether the last data record printed matched the filter provided by
the user, i.e. if it was really printed.

Parameter:

hJob: List & Label job handle

Return Value:

<0: Error code; 0: not printed; 1: printed

Hints:

This function can only be called after LlPrint() / LlPrintFields().

Example:

ret = LlPrint();

if (ret == 0 && LlPrintDidMatchFilter(hJob))

 ++ nCountOfPrintedRecords;

See also:

LlPrintGetFilterExpression, LlPrintWillMatchFilter, LL_NTFY_FAILS_FILTER-
Callback

Function Reference

205

LlPrintEnableObject{XE LlPrintEnableObject“}

Syntax:

INT LlPrintEnableObject(HLLJOB hJob, LPCTSTR lpszObject,

 BOOL bEnable);

Task:

Enables the object to be printed or disables it in order to tell List & Label to
ignore it.

Parameter:

hJob: List & Label job handle

lpszObject: Object name, see below

bEnable: TRUE: Object can be printed; FALSE: Object should be ignored

Return Value:

Error code (important!)

Hints:

The object name can be " (empty) to address all objects, otherwise it must be
the object name (entered by the user) with the prefix ':'.

If the user is able to change objects and object names in the Designer, it is
important to ask for the return value to test whether the object exists at all!

This function is particularly important for filling several independent tables.
Before calling LlPrint(), all table objects must be enabled.

Example:

LlPrintEnableObject(hJob, "", TRUE);

LlPrintEnableObject(hJob, ":AuthorList", FALSE);

See also:

LlPrint, LlPrintFields

LlPrintEnd

Syntax:

INT LlPrintEnd (HLLJOB hJob, INT nPages);

Task:

Ends the print job.

Parameter:

hJob: List & Label job handle

nPages: Number of empty pages desired after the print

API Reference

206

Return Value:

Error code

Hints:

The behavior is described in the programming part of this manual.

Please always use LlPrintEnd() if you have used LlPrintStart() or
LlPrintWithBoxStart(), even if these commands were aborted with an error,
otherwise resource and memory losses may result.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

if (LlPrintStart(hJob, LL_PROJECT_LABEL, "test", LL_PRINT_NORMAL) ==

0)

{

 <... etc...>

 LlPrintEnd(hJob, 0);

}

else

 MessageBox(NULL, "error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintFieldsEnd

LlPrinterSetup

Syntax:

INT LlPrinterSetup (HLLJOB hJob, HWND hWnd, UINT nObjType,

 LPCTSTR lpszObjName);

Task:

Opens a printer selection window and saves the user's selection in the printer
definition file.

Parameter:

hJob: List & Label job handle

hWnd: Window handle of the calling program

nObjType:

Value Meaning

LL_PROJECT_LABEL for labels

LL_PROJECT_CARD for cards

LL_PROJECT_LIST for lists

lpszObjName: Valid project file name (including path)

Function Reference

207

Return Value:

Error code

Hints:

Must be called before LlPrint(WithBox)Start(). Allows printer selection without
having to perform a printing process (as you must do when using
LlPrintOptionsDialog()).

We do not recommend this function, LlPrintOptionsDialog() is much more
flexible.

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintOptionsDialog, LlPrintGetPrinterInfo,
LlSetPrinterInPrinterFile

LlPrintFields

Syntax:

INT LlPrintFields (HLLJOB hJob);

Task:

Output of a table line.

Parameter:

hJob: List & Label job handle

Return Value:

Error code or command

Hints:

LlPrintFields() prints a data line in all non-hidden tables if the line matches the
filter condition.

With the return value LL_WRN_REPEAT_DATA, List & Label informs you that
you have to start a new page for the entry. With the corresponding LlPrint() on
the next page the record pointer should not be moved to the next record.

If more tables are added via LlDbAddTable() the return value also can be LL_WRN_-
TABLECHANGE. Please refer to chapter "Printing Relational Data" for further
information.

The exact behavior is described in the programming part of this manual.

See also:

LlPrint, LlPrintEnableObject

API Reference

208

LlPrintFieldsEnd

Syntax:

INT LlPrintFieldsEnd (HLLJOB hJob);

Task:

Prints (tries to print) the footer on the last page and appended objects.

Parameter:

hJob: List & Label job handle

Return Value:

Error code

Hints:

Only needed in list projects.

Is necessary to make sure that the footer is printed, even if no other normal
field data is available.

If the return value is LL_WRN_REPEAT_DATA, the footer could not be printed
on the (last) page. LlPrintFieldsEnd() might have to be called multiple times to
print the footer on another page.

If more tables are added via LlDbAddTable() the return value also can be LL_WRN_-
TABLECHANGE. Please refer to chapter "Printing Relational Data" for further
information.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

if (LlPrintStart(hJob, LL_PROJECT_LIST, "test",

 LL_PRINT_NORMAL) == 0)

{

 <... etc...>

 <data finished>

 while (LlPrintFieldsEnd(hJob) == LL_WRN_REPEAT_DATA)

 {

 <define variables for next page>

 // allow user to abort

 LlPrintUpdateBox(hJob)

 }

 LlPrintEnd(hJob, 0);

}

else

 MessageBox(NULL, "Error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlPrintEnd

Function Reference

209

LlPrintGetChartObjectCount

Syntax:

INT LlPrintGetChartObjectCount(HLLJOB hJob, UINT nType);

Task:

Returns the number of chart objects in the current project.

Parameter:

hJob: List & Label job handle

nType: Location of chart

Return Value:

Error code or number of charts

Hints:

nType must be one of the following:

LL_GETCHARTOBJECTCOUNT_CHARTOBJECTS: Returns the number of chart
objects, excluding those placed in table columns.

LL_GETCHARTOBJECTCOUNT_CHARTOBJECTS_BEFORE_TABLE: Returns the
number of chart objects before the table in the print order.

LL_GETCHARTOBJECTCOUNT_CHARTCOLUMNS: Returns the number of
chart columns.

This function can be used to optimize the printing loop. More hints can be
found in the chart chapter of this manual.

See also:

LlPrint

LlPrintGetCurrentPage

Syntax:

INT LlPrintGetCurrentPage (HLLJOB hJob);

Task:

Returns the page number of the page currently printing.

Parameter:

hJob: List & Label job handle

Return Value:

<0: Error code
>=0: page number

API Reference

210

Hints:

This function can only be used if a print job is open, i.e. after LlPrint[WithBox]-
Start().

It is the same page number that is returned by the Page() function in the
Designer, or by LlPrintGetOption(hJob, LL_PRNOPT_PAGE);

See also:

LlPrint

LlPrintGetFilterExpression

Syntax:

INT LlPrintGetFilterExpression (HLLJOB hJob, LPTSTR lpszBuffer,

 INT nBufSize);

Task:

Gets the chosen filter condition (if the project has assigned one).

Parameter:

hJob: List & Label job handle

lpszBuffer: Buffer in which the string is to be stored

nBufSize: Size of the buffer

Return Value:

Error code

Hints:

This function can only be used if a print job is open, i.e. after LlPrint[WithBox]-
Start().

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlPrintWillMatchFilter, LlPrintDidMatchFilter

LlPrintGetItemsPerPage

Syntax:

INT LlPrintGetItemsPerPage (HLLJOB hJob);

Task:

Returns the number of labels on a page (no. of columns * no. of lines).

Function Reference

211

Parameter:

hJob: List & Label job handle

Return Value:

<0: error code
>=0: number of labels

Hints:

1 is always returned for LL_PROJECT_LIST.

Can be used to calculate the total number of output pages. See hints in the
programming part of this manual.

See also:

LlPrintGetItemsPerTable

LlPrintGetOption

Syntax:

INT LlPrintGetOption (HLLJOB hJob, INT nIndex);

Task:

Returns the various print options which are set by the user in the LlPrint-
OptionsDialog().

Parameter:

hJob: List & Label job handle

nIndex: One of the values listed below

Return Value:

Setting chosen by the user

Hints:

In addition to the constants listed for LlPrintSetOption(), there are several
modified or additional (read-only) settings:

LL_PRNOPT_COPIES_SUPPORTED

Returns a flag indicating whether the currently selected copies count is
supported by the printer (this is usually important for list projects only).

Important: This function will - if successful - set the printer copies in the
driver!

If it is not successful, the LL_PRNOPT_COPIES must be set to 1 and the
copies must be made manually, if needed.

API Reference

212

LL_PRNOPT_UNIT

This option returns the measurement units set in the system settings.
Returned values are one of the following constants:

Value Meaning

LL_UNITS_MM_DIV_10 1/10 mm

LL_UNITS_MM_DIV_100 1/100 mm (default on metric systems)

LL_UNITS_MM_DIV_1000 1/1000 mm

LL_UNITS_INCH_DIV_100 1/100 inch

LL_UNITS_INCH_DIV_1000 1/1000 inch (default on imperial systems)

LL_UNITS_SYSDEFAULT_-
LORES

Default low resolution on the system

LL_UNITS_SYSDEFAULT_-
HIRES

Default high resolution on the system

LL_UNITS_SYSDEFAULT Default resolution on the system

LL_PRNOPT_USE2PASS

Returns if the printing process uses the two pass method, because the
TotalPages$() function has been used.

LL_PRNOPT_PRINTORDER

Returns the print order of the (labels/file cards) in the project. Default:
LL_PRINTORDER_HORZ_LTRB (horizontal, from top left to bottom right)

LL_PRNOPT_DEFPRINTERINSTALLED

Returns a flag indicating whether the operating system has a default printer

LL_PRNOPT_JOBID

Use this option after LlPrint() to determine the job number of the print job from
the spooler.

This ID can be used with the Windows-API functions to control the execution
of the print job.

See also:

LlPrintSetOption, LlPrintOptionsDialog, LlPrintGetOptionString

Function Reference

213

LlPrintGetOptionString

Syntax:

INT LlPrintGetOptionString (HLLJOB hJob, INT nIndex, LPTSTR

pszBuffer,

 UINT nBufSize);

Task:

Returns various print option string settings.

Parameter:

hJob: List & Label job handle

nIndex: See LlPrintSetOptionString()

pszBuffer: Address of buffer for the string

nBufSize: Maximum number of characters to be copied

Return Value:

Error code

Hints:

See LlPrintSetOptionString

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlPrintSetOption

LlPrintGetPrinterInfo

Syntax:

INT LlPrintGetPrinterInfo (HLLJOB hJob, LPTSTR lpszPrn,

 UINT nPrnBufSize, LPTSTR lpszPort, UINT nPortBufSize);

Task:

Returns information about the target printer.

Parameter:

hJob: List & Label job handle

lpszPrn: Address of buffer for the printer name

nPrnBufSize: Length of the buffer lpszPrn

lpszPort: Address of buffer for the printer port

nPortBufSize: Length of the buffer lpszPort

API Reference

214

Return Value:

Error code

Hints:

Examples for printer names are 'HP DeskJet 500' or 'NEC P6', for printer port
'LPT2:' or '\\server\printer1'

In case of an export, the printer contains the description of the exporter and
the port is empty.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlPrintStart, LlPrintWithBoxStart

LlPrintGetProjectParameter

Syntax:

INT LlPrintGetProjectParameter(HLLJOB hLlJob, LPCTSTR pszParameter,

 BOOL bEvaluated, LPTSTR pszBuffer, INT nBufSize, _LPUINT pnFlags)

Task:

Returns the value of a project parameter

Parameter:

hJob: List & Label job handle

pszParameter: Parameter name. May be NULL (see hints)

pszBuffer: Address of buffer for contents. May be NULL (see hints)

bEvaluated: If the parameter is of the type LL_PARAMETERFLAG_FORMULA,
this flag decides whether the parameter should be evaluated first.

nBufSize: Size of the buffer (in TCHARs)

Return Value:

Error code or required buffer size

Hints:

This function cannot be called before LlPrint[WithBox]Start()!

If pszParameter is NULL, a semicolon-separated list of all USER parameters is
returned.

If pszBuffer is NULL, the return value equals the size of the required buffer (in
TCHARS) including the termination.

Function Reference

215

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlSetDefaultProjectParameter, LlGetDefaultProjectParameter,
LlPrintGetProjectParameter

LlPrintIsChartFieldUsed

Syntax:

INT LlPrintIsChartFieldUsed (HLLJOB hJob, LPCTSTR lpszFieldName);

Task:

Specifies whether the given chart field is used in one of the expressions or
conditions of the project.

Parameter:

hJob: List & Label job handle

lpszFieldName: Chart field name

Return Value:

Value Meaning

1 Chart field is used

0 Chart field is not used

LL_ERR_UNKNOWN Chart field is not defined

Hints:

This function can only be called after LlPrintStart() or LlPrintWithBoxStart().

This function needs LL_OPTION_NEWEXPRESSIONS to be set to true
(default).

As calling LlDefineChartFieldStart() clears the "used" flags, this function will
return LL_ERR_UNKNOWN or 0 afterwards, regardless of whether the field is
actually used or not. Therefore do not use LlDefineChartFieldStart() after
LlPrint[WithBox]Start().

Instead of using a specific field name, wildcards can be used. For further
information see LlPrintIsFieldUsed().

Example:

if (LlPrintIsChartFieldUsed(hJob, "Month") == 1)

 LlDefineChartFieldExt(hJob, "Month", <...>);

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintIsVariableUsed, LlPrintIsFieldUsed

API Reference

216

LlPrintIsFieldUsed

Syntax:

INT LlPrintIsFieldUsed (HLLJOB hJob, LPCTSTR lpszFieldName);

Task:

Specifies whether the given field from the loaded project is used in one of the
expressions or conditions of the project. To query the used fields even before
starting a print job, the usage of LlGetUsedIdentifiers is preferable.

Parameter:

hJob: List & Label job handle

lpszFieldName: Field name

Return Value:

Value Meaning

1 Field is used

0 Field is not used

LL_ERR_UNKNOWN Field is not defined

Hints:

This function can only be called after LlPrintStart() or LlPrintWithBoxStart().

This function needs LL_OPTION_NEWEXPRESSIONS to be set to true
(default).

As calling LlDefineFieldStart() clears the "used" flags, this function will return
LL_ERR_UNKNOWN or 0 afterwards, regardless of whether the field is
actually used or not. Therefore do not use LlDefineFieldStart() after
LlPrint[WithBox]Start().

Instead of using a specific field name, wildcards can be used. This is
especially useful if you pass your fields ordered hierarchically, e.g. all fields
from the "Article" table use "Article." as prefix. Simply do a search for "Article.*"
to find out whether the table has been used at all by the user.

Example:

if (LlPrintIsFieldUsed(hJob, "Name") == 1)

 LlDefineFieldExt(hJob, "Name", <...>);

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintIsVariableUsed

Function Reference

217

LlPrintIsVariableUsed

Syntax:

INT LlPrintIsVariableUsed (HLLJOB hJob, LPCTSTR lpszFieldName);

Task:

Specifies whether the given variable is used in one of the expressions or
conditions of the project. Note the hints for LlPrintIsFieldUsed.

Parameter:

hJob: List & Label job handle

lpszFieldName: Field name

Return Value:

Value Meaning

1 Variable is used

0 Variable is not used

LL_ERR_UNKNOWN Variable is not defined

Hints:

This function can only be called after LlPrintStart() or LlPrintWithBoxStart().

This function needs LL_OPTION_NEWEXPRESSIONS to be set to true
(default).

As calling LlDefineVariableStart() clears the "used" flags, this function will
return LL_ERR_UNKNOWN or 0 afterwards, regardless of whether the field is
actually used or not. Therefore do not use LlDefineVariableStart() after
LlPrint[WithBox]Start().

Instead of using a specific variable name, wildcards can be used. For further
information see LlPrintIsFieldUsed().

Example:

if (LlPrintIsVariableUsed(hJob, "Name") == 1)

 LlDefineVariableExt(hJob, "Name", <...>);

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintIsFieldUsed

LlPrintOptionsDialog

Syntax:

INT LlPrintOptionsDialog (HLLJOB hJob, HWND hWnd, LPCTSTR lpszText);

Task:

Calls a print option selection window and enables the user to select print-
specific settings.

API Reference

218

Parameter:

hJob: List & Label job handle

hWnd: Window handle of the calling program

lpszText: Text to be passed in the dialog, e.g. 'Only 55 labels will be printed'

Return Value:

Error code

Hints:

This function is equivalent to LlPrintOptionsDialogTitle() with NULL as dialog
title. See this section for further hints.

See also:

LlPrinterSetup, LlPrintSetOption, LlPrintGetOption, LlPrintOptionsDialogTitle

LlPrintOptionsDialogTitle

Syntax:

INT LlPrintOptionsDialogTitle (HLLJOB hJob, HWND hWnd,

 LPCTSTR lpszTitle, LPCTSTR lpszText);

Task:

Calls a print option selection window and enables the user to select print-
specific settings.

Parameter:

hJob: List & Label job handle

hWnd: Window handle of the calling program

lpszTitle: Dialog title

lpszText: Text to be passed in the dialog, e.g. 'Only 55 labels will be printed'

Return Value:

Error code

Hints:

The following settings can be made:

Printer (or reference printer for export)
Export destination
Page number of the first page (if not hidden)
Number of copies required (if this has not been removed by LlPrintSetOption())
Starting position with LL_PROJECT_LABEL, LL_PROJECT_CARD, if more than

one label/file card per page exists
Print destination

Function Reference

219

Page range (print from ... to ...)

Default values can be defined with LlPrintSetOption(). This function must be
called after LlPrintStart() / LlPrintWithBoxStart() but before calling LlPrint() for
the first time.

The number of copies might have to be evaluated by the programmer as
some printer drivers do not have the relevant function implemented. See
programmer's hints in this manual.

The function LlPrinterSetup(...) allows you to call a print selection dialog
without further settings.

See also:

LlPrinterSetup, LlPrintSetOption, LlPrintGetOption, LlPrintOptionsDialog

LlPrintResetProjectState

Syntax:

INT LlPrintResetProjectState (HLLJOB hJob);

Task:

Resets the print state of the whole project, so that printing starts as if
LlPrint(WithBox)Start() has just been called.

Parameter:

hJob: List & Label Job handle

Return Value:

Error code

Hints:

This API resets the print state of the whole project (objects, page numbers,
user and sum variables etc).

This function can be used for mail merge tasks.

Example:

<start print job>

<while letters have to be printed>

{

 <get record>

 <print one letter>

 <if no error>

 LlPrintResetProjectState(hJob)

 <get next record of the database>

 <advance to next record>

}

<end print job>

API Reference

220

See Also:

LlPrintResetObjectStates

LlPrintSelectOffsetEx

Syntax:

INT LlPrintSelectOffsetEx (HLLJOB hJob, HWND hWnd);

Task:

Opens a dialog in which the user can choose the first label's position in the
label array.

Parameter:

hJob: List & Label job handle

hWnd: Window handle of the calling application

Return Value:

Error code

Hints:

Not applicable for list projects!

Default values can be defined with LlPrintSetOption(). This function must be
called after LlPrintStart() / LlPrintWithBoxStart() but before calling LlPrint() for
the first time.

The offset can be set and read via LL_PRNOPT_OFFSET.

The dialog is the same as the one offered by the LlPrintOptionsDialog[Title]().

The return value is in the range of 0 to (MAX_X*MAX_Y-1).

See also:

LlPrintOptionsDialog

LlPrintSetBoxText

Syntax:

INT LlPrintSetBoxText (HLLJOB hJob, LPCTSTR lpszText,

 INT nPercentage);

Task:

Sets text and meter percentage value in the abort dialog box.

Parameter:

hJob: List & Label job handle

Function Reference

221

lpszText: Text which should appear in the box

nPercentage: Progress percentage

Return Value:

Error code

Hints:

To make the text multi-line, line feeds ('\x0a') can be inserted.

Unchanged texts or NULL pointers are not re-drawn to avoid flickering,
unchanged percentage values or '-1' are also ignored.

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

if (LlPrintWithBoxStart(hJob, LL_PROJECT_LABEL, "test",

LL_PRINT_NORMAL,

 LL_BOXTYPE_NORMALMETER, hWnd, "print") == 0)

{

 LlPrintSetBoxText(hJob, "starting...", 0);

 <... etc...>

 LlPrintEnd(hJob);

 LlPrintSetBoxText(hJob, "done", 100);

}

else

 MessageBox(NULL, "error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlPrintWithBoxStart, LlPrintUpdateBox, LlPrint

LlPrintSetOption

Syntax:

INT LlPrintSetOption (HLLJOB hJob, INT nIndex, INT nValue);

Task:

Sets various print options for the print job or the print options dialog, for
example to preset the number of copies required.

Parameter:

hJob: List & Label job handle

nIndex: See below

nValue: Sets the option corresponding to the nIndex

Return Value:

Error code

API Reference

222

Hints:

Values for nIndex:

LL_PRNOPT_COPIES

is the number of copies to be preset in the print dialog box. A value of
LL_COPIES_HIDE will hide the "copies" option. The task of supporting copies
is described in the programming hints section.

Default: 1

LL_PRNOPT_PAGE

is the page number of the first page printed by List & Label. If this should not
be selectable, LL_PAGE_HIDE is the value to be passed.

Default: 1

LL_PRNOPT_OFFSET

is the position of the first label in the label array. The position the number
refers to is defined by the print order.

Default: 0

LL_PRNOPT_FIRSTPAGE

is the first page of the page range that shall be printed. If "All" has been
chosen, this is identical to LL_PRNOPT_PAGE.

LL_PRNOPT_LASTPAGE

is the page number of the last page to be printed.

Default: MAX_INT

LL_PRNOPT_JOBPAGES

is the number of pages a print job should contain if you choose
LL_PRINT_MULTIJOB in LlPrint[WithBox]Start().

Default: 16

LL_PRNOPT_PRINTDLG_ONLYPRINTERCOPIES

The print options dialog will only allow a copies value to be entered if the
printer supports copies.

Caution: the printer copies may not be useful for labels, as these may need
programmer's copies support instead of the printer's. See chapter "Copies".

Default: FALSE

Function Reference

223

LL_PRNOPT_UNITS

Returns the same value as LlGetOption(..., LL_OPTION_UNITS).

See also:

LlPrintStart, LlPrintWithBoxStart, LlPrintGetOption, LlPrintOptionsDialog

LlPrintSetOptionString

Syntax:

INT LlPrintSetOptionString (HLLJOB hJob, INT nIndex, LPCTSTR

pszValue);

Task:

Sets various print options for List & Label.

Parameter:

hJob: List & Label job handle

nIndex: See below

pszValue: The new value

Return Value:

Error code

Hints:

Values for nIndex:

LL_PRNOPTSTR_EXPORT

Sets the default export destination (for example "RTF", "HTML", "PDF", etc.) to
be used (or shown in the print dialog)

LL_PRNOPTSTR_ ISSUERANGES

A string containing default settings for the issue range, for example "1,3-4,10-".

LL_PRNOPTSTR_ PAGERANGES

A string containing default settings for the range(s) like shown in the printer
options dialog, for example "1,3-4,10-".

LL_PRNOPTSTR_PRINTDST_FILENAME

Is the default file name that the print should be saved to if "print to file" has
been chosen.

LL_PRNOPTSTR_PRINTJOBNAME

You can set the job name to be used for the print spooler with this option.

API Reference

224

You need to set it before the print job starts (that is, before the first call to
LlPrint()).

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

// LlPrintStart(...);

LlPrintSetOptionString(hJob, LL_PRNOPTSTR_PRINTDST_FILENAME,

"c:\temp\ll.prn");

//

// LlPrintEnd();

LlJobClose(hJob);

See also:

LlPrintGetOptionString

LlPrintSetProjectParameter

Syntax:

INT LlPrintSetProjectParameter(HLLJOB hLlJob, LPCTSTR pszParameter,

 LPCTSTR pszValue, UINT nFlags)

Task:

Changes the value of a project parameter (see project parameter chapter)

Parameter:

hJob: List & Label job handle

pszParameter: Parameter name

pszValue: Parameter value

nFlags: Parameter type (see LlSetDefaultProjectParameter()). Will only be used
for new parameters.

Return value:

Error code

Hints:

This function cannot be called before LlPrint[WithBox]Start()!

See also:

LlSetDefaultProjectParameter, LlGetDefaultProjectParameter, LlPrintGet-
ProjectParameter

Function Reference

225

LlPrintStart

Syntax:

INT LlPrintStart (HLLJOB hJob, UINT nObjType, LPCTSTR lpszObjName,

 INT nPrintOptions, INT nReserved);

Task:

starts the print job, loads the project definition.

Parameter:

hJob: List & Label job handle

nObjType: LL_PROJECT_LABEL, LL_PROJECT_LIST or LL_PROJECT_CARD

lpszObjName: The file name of the project

nPrintOptions: Print options

Value Meaning

LL_PRINT_NORMAL output to printer

LL_PRINT_PREVIEW output to preview

LL_PRINT_FILE output to file

LL_PRINT_EXPORT output to an export module that can be
defined with LlPrintSetOptionString(LL_PRN-
OPTSTR_EXPORT)

Optionally combined with LL_PRINT_MULTIPLE_JOBS: output in several
smaller print jobs (see below) with network spooler print.

nReserved: for future extensions

Return Value:

Error code

Hints:

Please check the return value!

nPrintOptions for LL_PRINT_NORMAL can be combined with 'or' using
LL_PRINT_MULTIPLE_JOBS so that the print job can be split into several
smaller individual jobs. The number of the page after which the job should
split can be set with LlPrintSetOption().

No abort dialog box is displayed, see LlPrintWithBoxStart().

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

if (LlPrintStart(hJob, LL_PROJECT_LABEL, "test",

 LL_PRINT_NORMAL) == 0)

{

API Reference

226

 <... etc ...>

 LlPrintEnd(hJob);

}

else

 MessageBox(NULL, "Error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlPrintWithBoxStart, LlPrintEnd, LlPrintSetOption

LlPrintUpdateBox

Syntax:

INT LlPrintUpdateBox (HLLJOB hJob);

Task:

Allows redrawing of the abort box used if you print with LlPrintWithBoxStart().

Parameter:

hJob: List & Label job handle

Return Value:

Error code

Hints:

This is basically a message loop.

This function should be called if you run lengthy operations to get your data,
as it allows the dialog box to react to any necessary window repaint or an
abort button press.

List & Label implicitly calls this function on LlPrint(), LlPrintFields() or
LlPrintSetBoxText() calls, so it is only needed if your own processing lasts
some time.

See also:

LlPrintWithBoxStart, LlPrintSetBoxText

LlPrintWillMatchFilter

Syntax:

INT LlPrintWillMatchFilter (HLLJOB hJob);

Task:

Specifies whether the present data record matches the filter chosen by the
user, i.e. whether it will be printed with the next LlPrint() or LlPrintFields()
function.

Function Reference

227

Parameter:

hJob: List & Label job handle

Return Value:

<0: Error code
0: Not printed
1: Printed

Hints:

This function can only be called after LlPrintStart() or LlPrintWithBoxStart().

The function calculates the filter value using the currently defined data
(variables or fields).

Example:

if (LlPrintWillMatchFilter(hJob))

See also:

LlPrintGetFilterExpression, LlPrintDidMatchFilter

LlPrintWithBoxStart

Syntax:

INT LlPrintWithBoxStart (HLLJOB hJob, UINT nObjType,

 LPCTSTR lpszObjName, INT nPrintOptions, INT nBoxType,

 HWND hWnd, LPCTSTR lpszTitle);

Task:

Starts the print job and opens the project file. Supports an abort window.

Parameter:

hJob: Job handle

nObjType: LL_PROJECT_LABEL, LL_PROJECT_LIST or LL_PROJECT_CARD

lpszObjName: The file name of the project

nPrintOptions:

Value Meaning

LL_PRINT_NORMAL output to printer

LL_PRINT_PREVIEW output to preview

LL_PRINT_FILE output to file

LL_PRINT_EXPORT output to an export module that can be
defined with LlPrintSetOptionString(LL_PRN-
OPTSTR_EXPORT)

API Reference

228

Optionally combined with one of the following flags:

Value Meaning

LL_PRINT_MULTIPLE_JOBS output in several smaller print jobs (see
below) with network spooler print.

LL_PRINT_REMOVE_-
UNUSED_VARS

Fields and variables not required by the
project are removed from the internal
buffer after printing starts. This can speed
up following declarations considerably. The
recommended practice however is to query
the required data using
LlGetUsedIdentifiers() which is the better
alternative.

These options influence LL_OPTIONSTR_EXPORTS_ALLOWED.

nBoxType:

Value Meaning

LL_BOXTYPE_-
NORMALMETER

Abort box with bar meter and text

LL_BOXTYPE_-
BRIDGEMETER

Abort box with bridge meter and text

LL_BOXTYPE_EMPTYABORT Abort box with text

LL_BOXTYPE_-
NORMALWAIT

Box with bar meter and text, no abort
button

LL_BOXTYPE_BRIDGEWAIT Box with bridge meter and text, no abort
button

LL_BOXTYPE_EMPTYWAIT Box with text, no abort button

LL_BOXTYPE_STDABORT Abort box with system bar meter

LL_BOXTYPE_STDWAIT Box with bar meter, no abort button

LL_BOXTYPE_NONE No box.

Please note that starting with Windows Vista, the Boxtype parameter is
ignored and the standard Windows progress bar is used.

hWnd: Window handle of the calling program (used as parent of the dialog
box)

lpszTitle: Title of the abort dialog box, also appears as text in the print
manager

Return Value:

Error code

Function Reference

229

Hints:

Please check the return value!

An application modal abort dialog box is shown as soon as the print starts. Its
title is defined by the passed parameter. In the dialog box there is a
percentage-meter-control and a two-line static text, both of which can be set
using LlPrintSetBoxText() to show the user the print progress, and also an
abort button if required (see below).

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

if (LlPrintWithBoxStart(hJob, LL_PROJECT_LABEL, "test",

 LL_PRINT_NORMAL, LL_BOXTYPE_NORMALMETER, hWnd, "print") == 0)

{

 LlPrintSetBoxText(hJob, "There we go", 0);

 <... etc...>

 LlPrintEnd(hJob, 0);

}

else

 MessageBox(NULL, "error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlPrintStart, LlPrintEnd

LlProjectClose

Syntax:

HLLDOMOBJ LlProjectClose(HLLJOB hJob);

Task:

This function is only available starting with the Professional Edition!
Closes an open project and releases the relevant project file again. The file is
not saved! Detailed application examples can be found in chapter "DOM
Functions".

Parameter:

hJob: List & Label job handle

Return value:

Error code

Example:

See chapter "DOM Functions".

See also:

LlProjectSave, LlProjectOpen

API Reference

230

LlProjectOpen

Syntax:

INT LlProjectOpen(HLLJOB hJob, UINT nObjType,

 LPCTSTR pszObjName, UINT nOpenMode);

Task:

This function is only available starting with the Professional Edition!
Opens the specified project file. Call LlDomGetProject() to retrieve the DOM
handle for the project object afterwards. This object is the basis for all further
DOM functions. Detailed application examples can be found in chapter "DOM
Functions".

Parameter:

hJob: List & Label job handle

nObjType:

Value Meaning

LL_PROJECT_LABEL for labels

LL_PROJECT_CARD for index cards

LL_PROJECT_LIST for lists

pszObjName: Project file name with path specification

nOpenMode: Combination (ORing) of a flag from each of the following three
groups:

Value Meaning

LL_PRJOPEN_CD_OPEN_EXISTIN
G

File must already exist, otherwise error
code will be returned.

LL_PRJOPEN_CD_CREATE_ALWA
YS

File is always newly created. If it already
exists, the content is deleted.

LL_PRJOPEN_CD_CREATE_NEW File is newly created if it does not exist. If
file already exists, error code is returned.

LL_PRJOPEN_CD_OPEN_ALWAYS If file exists the content is used, otherwise
file is newly created.

Value Meaning

LL_PRJOPEN_AM_READWRITE File is opened for read/write access.

LL_PRJOPEN_AM_READONLY File is only opened for read access.

Function Reference

231

Value Meaning

LL_PRJOPEN_EM_IGNORE_
FORMULAERRORS

Syntax errors are ignored. See notes.

Return value:

Error code

Hints

If the flag LL_PRJOPEN_EM_IGNORE_FORMULAERRORS is used, syntax
errors in the project are ignored. This has the advantage that projects can be
successfully opened and edited even if the data structure is unknown or
undefined. As the formulas in the project are then treated as placeholders, the
section with the used variables (see LlGetUsedIdentifiers()) cannot be correctly
written, if you e.g. add further columns to a table. The content of this section
is left unchanged when saving. The same applies for the case where a new
table, which has not previously been used, is inserted in a report container.
Therefore, LL_PRJOPEN_EM_IGNORE_FORMULAERRORS must not be set
for such cases. If the flag is not set, LL_NTFY_EXPRERROR can be used to
collect the error messages for display.

Example:

See chapter "DOM Functions".

See also:

LlProjectSave, LlProjectClose, LlDomGetProject

LlProjectSave

Syntax:

HLLDOMOBJ LlProjectSave(HLLJOB hJob, LPCTSTR pszObjName);

Task:

This function is only available starting with the Professional Edition! Saves
an open project. Detailed application examples can be found in chapter "DOM
Functions".

Parameter:

hJob: List & Label job handle

pszObjName: Project file name with path. May be NULL (see notes)

Return value:

Error code

API Reference

232

Hints

If pszObjName is NULL, the file is saved under the same name as when it was
opened.

Example:

See chapter "DOM Functions".

See also:

LlProjectOpen, LlProjectClose

LlRTFCopyToClipboard

Syntax:

INT LlRTFCopyToClipboard(HLLJOB hJob, HLLRTFOBJ hRTF);

Task:

Copies the contents of the RTF object to the clipboard. Several clipboard
formats are available: CF_TEXT, CF_TEXTW and CF_RTF.

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

Return Value:

Error code

See also:

LlRTFCreateObject

LlRTFCreateObject

Syntax:

HLLRTFOBJ LlRTFCreateObject(HLLJOB hJob);

Task:

Creates an instance of a List & Label RTF object to be used in stand-alone
mode.

Parameter:

hJob: List & Label job handle

Return Value:

RTF object handle, or NULL in case of an error.

Function Reference

233

See also:

LlRTFGetText, LlRTFDeleteObject

LlRTFDeleteObject

Syntax:

INT LlRTFDeleteObject(HLLJOB hJob, HLLRTFOBJ hRTF);

Task:

Destroys the instance of the stand-alone RTF object.

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

Return Value:

Error code

See also:

LlRTFCreateObject

LlRTFDisplay

Syntax:

INT LlRTFDisplay(HLLJOB hJob, HLLRTFOBJ hRTF, HDC hDC,

 _PRECT pRC, BOOL bRestart, LLPUINT pnState);

Task:

Paints the contents of the RTF object in a device context (DC). Can be used to
display the RTF contents in a window or print them to the printer.

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

hDC: DC for the device. If NULL, the standard printer will be used.

pRC: Pointer to the rect with logical coordinates (mm/10, inch/100 etc.) in
which the contents will be printed. May be NULL for a printer DC, in which
case the whole printable area of the page will be used.

bRestart: If TRUE, the output will start at the beginning of the text. Otherwise
it will be continued after the point where the previous print ended, thus
enabling a multi-page print.

pnState: State value used by the next LlRTFDisplay() call

API Reference

234

Return Value:

Error code

Example:

// Create Printer-DC

HDC hDC = CreateDC(NULL,"\\\\prnsrv\\default",NULL,NULL);

RECT rc = {0,0,1000,1000};

BOOL bFinished = FALSE;

INT nPage = 0;

// Init document

StartDoc(hDC,NULL);

while (!bFinished)

{

 nPage++;

 UINT nState = 0;

 // Init page

 StartPage(hDC);

 // Prepare DC (set coordinate system)

 SetMapMode(hDC,MM_ISOTROPIC);

 SetWindowOrgEx(hDC,rc.left,rc.top,NULL);

 SetWindowExtEx(hDC,rc.right-rc.left,rc.bottom-rc.top,NULL);

 SetViewportOrgEx(hDC,0,0,NULL);

 SetViewportExtEx(hDC,GetDeviceCaps(hDC,HORZRES),

 GetDeviceCaps(hDC,VERTRES),NULL);

 // print RTF-Text

 BOOL bFinished = (LlRTFDisplay(hJob, hRTF, hDC, &rc, nPage ==

 1, &nState) == LL_WRN_PRINTFINISHED);

 // done page

 EndPage(hDC);

}

 EndDoc(hDC);

See also:

LlRTFCreateObject

LlRTFEditObject

Syntax:

INT LlRTFEditObject(HLLJOB hJob, HLLRTFOBJ hRTF, HWND hWnd,

 HDC hPrnDC, INT nProjectType, BOOL bModal);

Task:

Displays the RTF editor to the user. All variables and – in case of
LL_PROJECT_LIST – all fields are available for use in expressions.

file:///prnsrv/default

Function Reference

235

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

hWnd: Handle of parent window or host control

hPrnDC: Reference DC of the destination (usually a printer DC). Important for
the choice of available fonts. Can be NULL, in which case the default printer is
used.

nProjectType: Project type (LL_PROJECT_LABEL, LL_PROJECT_CARD or
LL_PROJECT_LIST).

bModal: if TRUE, the dialog will be displayed modally. If FALSE, the control
passed as hWnd will be replaced by the RTF control. Please note, that the
window created by Visual C++ MFC is not suitable for the non modal mode.
We suggest using the RTF OCX control (cmll20r.ocx) instead.

Return Value:

Error code

See also:

LlRTFCreateObject

LlRTFEditorInvokeAction

Syntax:

INT LlRTFEditorInvokeAction(HLLJOB hJob, HLLRTFOBJ hRTF,

 INT nControlID);

Task:

Allows activation of an action in the RTF control by code. This is important for
in-place RTF controls (see LlRTFEditObject()) if the hosting application provides
a separate menu.

Parameter

hJob: List & Label job handle

hRTF: RTF object handle

nControlID: Control ID of the button to be activated. The IDs of the items in
List & Label can be found in the file MENUID.TXT of your List & Label
installation.

Return Value:

Error code

API Reference

236

See also:

LlRTFCreateObject , LlRTFEditorProhibitAction, LlRTFEditObject

LlRTFEditorProhibitAction

Syntax:

INT LlRTFEditorProhibitAction(HLLJOB hJob, HLLRTFOBJ hRTF,

 INT nControlID);

Task:

Disables buttons in the RTF control.

Parameter

hJob: List & Label job handle

hRTF: RTF object handle

nControlID: Control ID of the button to be disabled. The IDs of the items in
List & Label can be found in the file MENUID.TXT of your List & Label
installation.

Return Value:

Error code

See also:

LlRTFCreateObject , LlRTFEditorInvokeAction, LlRTFEditObject

LlRTFGetText

Syntax:

INT LlRTFGetText(HLLJOB hJob, HLLRTFOBJ hRTF, INT nFlags,

 LPTSTR lpszBuffer, UINT nBufferSize);

Task:

Returns the text of an RTF object

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

nFlags: Options (see LlRTFGetTextLength())

lpszBuffer: Address of buffer for the text

nBufferSize: Maximum number of characters to be copied

Function Reference

237

Return Value:

Error code

Hints:

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Example:

HLLRTFOBJ hRTF = LlRTFCreateObject(hJob);

if (LlRTFEditObject(hJob, hRTF, NULL, NULL, LL_PROJECT_LABEL) >= 0)

{

 INT nFlags = LL_RTFTEXTMODE_RTF|LL_RTFTEXTMODE_EVALUATED);

 INT nLen = LlRTFGetTextLength(hJob,hRTF,nFlags);

 TCHAR* pszText = new TCHAR[nLen+1];

 LlRTFGetText(hJob, hRTF, nFlags, pszText, nLen+1);

 printf("'%s'\n\n", pszText);

 delete[] pszText;

}

See also:

LlRTFCreateObject, LlRTFGetTextLength

LlRTFGetTextLength

Syntax:

INT LlRTFGetTextLength(HLLJOB hJob, HLLRTFOBJ hRTF, INT nFlags);

Task:

Returns the size of the text contained in the object. Necessary to determine
the required buffer size for the text.

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

nFlags: One option from each of the two groups mentioned below, combined
using a bitwise 'or' (or by addition):

Value Description

Options for the format of the text to be retrieved:

LL_RTFTEXTMODE_RTF RTF-formatted text (incl. RTF control
words etc.)

LL_RTFTEXTMODE_PLAIN Text in plain text format

Options for the evaluation state:

LL_RTFTEXTMODE_RAW Text in plain format, with unevaluated

API Reference

238

formulas if applicable

LL_RTFTEXTMODE_EVALUATE
D

Text in evaluated format (all formulas
replaced by their computed results)

Return Value:

Length of the buffer (negative in case of an error)

See also:

LlRTFCreateObject, LlRTFGetText

LlRTFSetText

Syntax:

INT LlRTFSetText(HLLJOB hJob, HLLRTFOBJ hRTF, LPCTSTR lpszText);

Task:

Sets the text in the RTF control. The format of the text (plain or RTF) is auto-
detected.

Parameter:

hJob: List & Label job handle

hRTF: RTF object handle

lpszText: New contents

Return Value:

Error code

See also:

LlRTFCreateObject

LlSelectFileDlgTitleEx

Syntax:

INT LlSelectFileDlgTitleEx (HLLJOB hJob, HWND hWnd, LPCTSTR pszTitle,

 UINT nObjType, LPTSTR pszBuffer, UINT nBufLen, LPVOID pReserved);

Task:

Opens a file selection dialog with an optionally integrated preview window.

Parameter:

hJob: List & Label job handle

hWnd: Window handle of the calling program

pszTitle: Title for the dialog

Function Reference

239

nObjType:

Value Meaning

LL_PROJECT_LABEL for labels

LL_PROJECT_CARD for cards

LL_PROJECT_LIST for lists

Combined with LL_FILE_ALSONEW if a file name for a new (not yet existing)
project can be entered.

pszBuffer, nBufSize: Buffer for the file name. Must be initialized with a file
name or an empty string.

pReserved: Reserved, set to NULL or empty ("").

Return Value:

Error code

Hints:

Important for Visual Basic (and some other languages as well), if the OCX
control is not used: the buffer must be allocated and initialized by an 0-
terminated string.

Advantages compared to a normal CommonDialog: display of the project
description, a preview sketch, the language consistency within List & Label
and the adaptation of the dialog design.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

Example:

char szFilename[260 + 1];

INT nRet;

nRet = LlSelectFileDlgTitleEx(hJob, hWnd, "Report" , LL_PROJECT_LIST,

 szFilename, sizeof(szFilename));

if (nRet == OK)

{

 <then do what you have to do>

}

See also:

LL_OPTION_OFNDIALOG_NOPLACESBAR, LL_OPTIONSTR_..._PRJDESCR

LlSetDebug

Syntax:

void LlSetDebug (INT nOnOff);

API Reference

240

Task:

Switches the debug mode on or off.

Parameter:

nOnOff: 0 if debug mode is to be switched off, otherwise the following values
can be additionally passed:

Value Meaning

LL_DEBUG_CMBTLL to switch on normal debugging-
info

LL_DEBUG_CMBTDWG to switch on debugging-info for
graphic functions

LL_DEBUG_CMBTLL_-
NOCALLBACKS

switch off debugging-info for
notifications/callbacks

LL_DEBUG_CMBTLL_NOSTORAGE switch off debugging-info for
storage- (LlStgSys...()-) functions

LL_DEBUG_CMBTLL_NOSYSINFO do not issue system information
dump on LlSetDebug()

LL_DEBUG_CMBTLL_LOGTOFILE debug output will also be
directed to a log file
(COMBIT.LOG in your
%APPDATA% directory).

Hints:

Use the program Debwin included in your package to show the debug output
in a separate window.

If debug mode is switched on in List & Label with LlSetDebug(LL_DEBUG_-
CMBTLL), the DLL prints every function call with the corresponding
parameters and results. An '@' is added to the function names, so that the
function calls can be easily differentiated from other internal List & Label
debugging output.

The output is indented in case a DLL in debugging mode calls other functions
of a DLL (even itself) which is also in debugging mode.

Further information can be found in chapter "Debug Tool Debwin".

Example:

HLLJOB hJob;

int v;

LlSetDebug(LL_DEBUG_CMBTLL | ...);

hJob = LlJobOpen(0);

v = LlGetVersion(VERSION_MAJOR);

LlJobClose(hJob);

prints approx. the following in the debugging output:

Function Reference

241

@LlJobOpen(0) = 1

@LlGetVersion(1) = 6

@LlJobClose(1)

LlSetDefaultProjectParameter

Syntax:

INT LlSetDefaultProjectParameter(HLLJOB hLlJob,

 LPCTSTR pszParameter, LPCTSTR pszValue, UINT nFlags)

Task:

Sets the default value of a project parameter (see Project Parameter chapter)

Parameter:

hJob: List & Label job handle

pszParameter: Parameter name. If this parameter is NULL, all USER
parameters will be deleted from the internal list.

pszValue: Parameter value

nFlags: Parameter type. See Project Parameters chapter for valid values.

Return Value:

Error code

Hints:

This function should be called before LlDefineLayout() and
LlPrint[WithBox]Start()!

See also:

LlGetDefaultProjectParameter, LlPrintSetProjectParameter, LlPrintGetProject-
Parameter

LlSetFileExtensions

Syntax:

INT LlSetFileExtensions (HLLJOB hJob, INT nObjType,

 LPCTSTR lpszProjectExt, LPCTSTR lpszPrintExt,

 LPCTSTR lpszSketchExt);

Task:

Setting of user-defined file extensions.

Parameter:

hJob: List & Label job handle

nObjType: Project type

API Reference

242

Value Meaning

LL_PROJECT_LABEL for labels

LL_PROJECT_CARD for cards

LL_PROJECT_LIST for lists

lpszProjectExt: Extension

Type Default

LL_PROJECT_LABEL "lbl"

LL_PROJECT_CARD "crd"

LL_PROJECT_LIST "lst"

lpszPrintExt: Extension for printer definitions file

Type Default

LL_PROJECT_LABEL "lbp"

LL_PROJECT_CARD "crp"

LL_PROJECT_LIST "lsp"

lpszSketchExt: Extension for file dialog sketch

Type Default

LL_PROJECT_LABEL "lbv"

LL_PROJECT_CARD "crv"

LL_PROJECT_LIST "lsv"

Return Value:

Error code

Hints:

It is important that all 9 file extensions are different!

Please call this function before LlDefineLayout() and before the functions
LlPrint...Start(), preferably directly after LlJobOpen() or LlJobOpenLCID().

You can also get and set these extensions with LlSetOptionString().

Example:

HLLJOB hJob;

int v;

hJob = LlJobOpen(0);

v = LlSetFileExtensions(hJob, LL_PROJECT_LIST, "rpt", "rptp",

"rptv");

//

LlJobClose(hJob);

Function Reference

243

LlSetNotificationCallback

Syntax:

FARPROC LlSetNotificationCallback (HLLJOB hJob, FARPROC lpfnNotify);

Task:

Definition of a procedure which will be called for notifications.

Parameter:

hJob: List & Label job handle

lpfnNotify: The address of a function (see below)

Return Value:

Address of the procedure if successful, NULL otherwise

Hints:

The callback function has higher priority than the message; if it is defined no
message is sent, but the callback function is called.

This function cannot be used if the .NET component, OCX or VCL controls are
used.

The callback function has the following definition:

LPARAM STDCALL MyCallback(UINT nFunction, LPARAM lParam)

and must be an exported function

The definition of the parameter nFunction and lParam can be found in chapter
"Callbacks and Notifications".

Example:

LPARAM STDCALL MyCallback(UINT nFunction, LPARAM lParam)

{ //....}

HLLJOB hJob;

unsigned int wMsg;

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

v = LlSetNotificationCallback(hJob, MyCallback);

//

LlJobClose(hJob);

See also:

LlGetNotificationMessage, LlSetNotificationMessage

API Reference

244

LlSetNotificationCallbackExt

Syntax:

FARPROC LlSetNotificationCallbackExt (HLLJOB hJob, INT nEvent,

 FARPROC lpfnNotify);

Task:

Definition of a procedure which will be called for notifications of the given
event.

Parameter:

hJob: List & Label job handle

nEvent: Event-ID (LL_CMND_xxx or LL_NTFY_xxxx)

lpfnNotify: The address of a function (see below)

Return Value:

Address of the procedure if successful, NULL otherwise

Hints:

The "specialized" callback function has a higher priority than the "general"
callback function or a message.

List & Label first of all searches for a specialized callback function for the event
to be raised. If one is defined, it will be called. If not, List & Label checks
whether a general callback handler has been installed with
LlSetNotificationCallback(). If so, it will be called. If not, List & Label checks
whether a message for the current event has been defined using
LlSetNotificationMessage(). If so, the message will be sent. This function may
not be used with the .NET component as this component already uses the API
for its own functionality.

The callback function has the following definition:

LPARAM STDCALL MyCallback(UINT nFunction, LPARAM lParam)

and must be an exported function

The definition of the parameter nFunction and lParam can be found in chapter
"Callbacks and Notifications".

Example:

LPARAM STDCALL MyCallback(UINT nFunction, LPARAM lParam)

//....

HLLJOB hJob;

unsigned int wMsg;

hJob = LlJobOpen(0);

Function Reference

245

v = LlSetNotificationCallbackExt(hJob,

LL_CMND_CHANGE_DCPROPERTIES_DOC, MyCB);

//

LlJobClose(hJob);

See also:

LlSetNotificationCallback

LlSetNotificationMessage

Syntax:

UINT LlSetNotificationMessage (HLLJOB hJob, UINT nMessage);

Task:

Definition of a message number which differs from the presetting for callback
(USER) objects.

Parameter:

hJob: List & Label job handle

nMessage: The new message number

Return Value:

Error code

Hints:

The default message number has the value of the function
RegisterWindowMessage("cmbtLLMessage").

The callback function has higher priority; if this is defined, no message is sent.

The definition of the parameter nFunction and lParam can be found in chapter
"Callbacks and Notifications".

Example:

HLLJOB hJob;

unsigned int wMsg;

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

v = LlSetNotificationMessage(hJob, WM_USER + 1);

//

LlJobClose(hJob);

See also:

LlGetNotificationMessage, LlSetNotificationCallback

API Reference

246

LlSetOption

Syntax:

INT LlSetOption (HLLJOB hJob, INT nMode, INT_PTR nValue);

Task:

Sets diverse options in List & Label.

Parameter:

hJob: List & Label job handle

nMode: Mode index, see below

nValue: New value

Return Value:

Error code

Hints:

Please call this function before LlDefineLayout() and before the functions
LlPrint...Start(), preferably directly after LlJobOpen()/LlJobOpenLCID().

LL_OPTION_ADDVARSTOFIELDS

TRUE: in list projects, the formula wizard offers variables in addition to fields
in a table column formula.

FALSE: in table objects, only fields will be offered (default).

This option only affects list projects.

LL_OPTION_ALLOW_COMBINED_COLLECTING_OF_DATA_FOR_-
COLLECTIONCONTROLS

TRUE: If multiple report container elements use the same data source (ex.
multiple charts or crosstabs etc.), the data is passed only once to the report
and is re-used by all these elements. Depending on the project, this might
yield a noticeable performance boost. The main drawback is a larger memory
footprint. Additionally, it is no longer possible to change the value of variables
that influence the properties or contents of the elements during printing
(default).

FALSE: Each element gets its own data.

LL_OPTION_ALLOW_LLX_EXPORTERS

TRUE: List & Label will accept export modules that are loaded during
LL_OPTIONSTR_LLXPATHLIST

FALSE: List & Label will not use export module functionality.

Function Reference

247

This option must be set before the LLXPATHLIST call.

Default: TRUE

LL_OPTION_CALCSUMVARSONINVISIBLELINES

This sets the default value for the Designer option specifying whether or not
sum variables should also be calculated if data lines are suppressed. The
value selected in the Designer will then be saved in and loaded from the
project file.

Default: FALSE

LL_OPTION_CALC_SUMVARS_ON_PARTIAL_LINES

TRUE: The sum variables are updated as soon as one data line for the record
has been printed.

FALSE: The sum variables are updated as soon as all data lines have been
completely printed.

Default: FALSE

LL_OPTION_CALLBACKMASK

The value can be any combination of the following values:

LL_CB_PAGE, LL_CB_PROJECT, LL_CB_OBJECT, LL_CB_HELP,
LL_CB_TABLELINE, LL_CB_TABLEFIELD

For the definition of parameters, please read the chapter on callbacks.

LL_OPTION_CALLBACKPARAMETER

Sets a parameter that is passed in the scCallback structure to any of the
callbacks. Please refer to the chapter on callbacks for further details.

LL_OPTION_CODEPAGE

This option sets or reads the code page which is used for all SBCS/DBCS and
Unicode translations in List & Label.

This applies to the "A" API of the DLL as well as reading/writing project files.

This setting is used globally, so it is valid for all List & Label jobs in one task,
and the hJob parameter is ignored.

The code page has to be installed on the system (NLS1 for this code page
must be installed).

Default: CP_ACP.

1 NLS = National Language Support

API Reference

248

LL_OPTION_COMPRESSRTF

The text of an RTF control is stored in the project file. When this option is set
to TRUE, the text will be compressed.

Set this option to FALSE if you want to see the text in the project file (for
example for debugging).

Default: TRUE

LL_OPTION_COMPRESSSTORAGE

TRUE: the preview data will be compressed. This is a bit slower, but saves a
lot of disk space.

FALSE: no compression (default).

LL_OPTION_CONVERTCRLF

TRUE: List & Label translates CR-LF combinations in variable and field
contents to LF (and prevents duplicate line breaks) (default).

FALSE: contents remain unchanged.

LL_OPTION_DEFAULTDECSFORSTR

This option sets the number of decimal places that the Designer function
Str$() uses if the number is not defined by the user in the Designer.

Default: 5

LL_OPTION_DEFDEFFONT

Allows you to set the handle of the font used as default for the project's
default font. The handle need not be valid after the API call, an own copy of
the font will be used.

This font can be set by LL_OPTIONSTR_DEFDEFFONT.

Default: GetStockObject(ANSI_VAR_FONT)

LL_OPTION_DELAYTABLEHEADER

This option defines whether List & Label prints the table header when calling
LlPrint() or when first printing a table line (LlPrintFields()):

TRUE: at LlPrintFields(), thus triggered by the first table line (Default)

FALSE: at LlPrint(). Of course, if fields are used in the header line, they must
be defined at the LlPrint() call.

LL_OPTION_ DESIGNEREXPORTPARAMETER

see chapter "Direct Print and Export From the Designer"

Function Reference

249

LL_OPTION_ DESIGNERPREVIEWPARAMETER

see chapter "Direct Print and Export From the Designer".

LL_OPTION_ DESIGNERPRINT_SINGLETHREADED

see chapter "Direct Print and Export From the Designer"

LL_OPTION_ERR_ON_FILENOTFOUND

TRUE: if a graphic file is not found during print time
LL_ERR_DRAWINGNOTFOUND will be returned

FALSE: the error will be ignored without any feedback. (Default)

LL_OPTION_ESC_CLOSES_PREVIEW

This option defines whether the "Escape" key closes the preview window.
Default: FALSE.

LL_OPTION_EXPRSEPREPRESENTATIONCODE

Character code of the character that is used to divide an expression into
multiple lines in the expression wizard.

This value might have to be changed for code pages other than standard
Western code page, as the default might be used for a printable character.

LL_OPTION_FONTQUALITY

(See also LL_OPTION_FONTPRECISION below)

Can be used to influence the Windows font mapper, for example to use a
device font. The value set by this option will be used for the
LOGFONT.lfQuality field when a font instance is being created.

The permitted values are referenced in the MSDN documentation.

Default: DEFAULT_QUALITY.

LL_OPTION_FONTPRECISION

(See also LL_OPTION_FONTQUALITY above)

Can be used to influence the font mapper of Windows, for example to use a
device font. The value set by this option will be used for the
LOGFONT.lfOutPrecision field when a font instance is being created.

The permitted values are referenced in the MSDN documentation.

Default: OUT_STRING_PRECIS.

API Reference

250

LL_OPTION_FORCE_DEFAULT_PRINTER_IN_PREVIEW

TRUE: printer name setting will not passed on to the preview, so that the
preview always uses the default printer in its print routines

FALSE: printer name setting will be passed on to the preview (default)

LL_OPTION_FORCEFONTCHARSET

Selects whether all fonts in the system are offered in font selection combo
boxes or whether they must support the charset of the default LCID (or the
font set with LL_OPTION_LCID). See also LL_OPTION_SCALABLEFONTSONLY.

Default: FALSE

LL_OPTION_FORCEFIRSTGROUPHEADER

Set to TRUE to force the first group header to be printed even if the evaluated
result of the "group by" property is empty.

Default: FALSE

LL_OPTION_HELPAVAILABLE

TRUE: display help buttons (default)

FALSE: do not display help buttons

LL_OPTION_IMMEDIATELASTPAGE

FALSE: the LastPage() flag will not be set before all objects have been printed
(up to a table in case of a report project).

TRUE: a non-finished object will immediately force LastPage() to be FALSE,
and will reset all its appended objects.

Default: TRUE

LL_OPTION_INCREMENTAL_PREVIEW

TRUE: The preview is displayed as soon as the first page has been created
and further pages are added to the display incrementally. If the user closes
the preview window during printing, you will receive
LL_ERR_USER_ABORTED from the print functions. This error code must
therefore be processed in any case. If LlPreviewDisplay() is called at the end
of printing, this API will only return when the user closes the preview window.

FALSE: The preview is not displayed immediately, the application must
explicitly call LlPreviewDisplay() for display.

Default: TRUE

Function Reference

251

LL_OPTION_INTERCHARSPACING

TRUE: the space between the characters for block-justified text will vary.

FALSE: only the width of spaces between words will be varied (default)

LL_OPTION_INCLUDEFONTDESCENT

TRUE: the logfont member LOGFONT.lfDescent is considered when
calculating the line distances. This leads to a wider line space but prevents
extreme font descents from being cut off. Default.

FALSE: compatible mode

LL_OPTION_LCID

When you set this option, the default values for locale-dependent parameters
are set accordingly (inch/metric unit, decimal point, thousands separator,
currency symbol and fonts (see LL_OPTION_FORCEFONTCHARSET)).

It also defines the default locale for the Loc...$() and Date$() functions.

Default: LOCALE_USER_DEFAULT.

LL_OPTION_LOCKNEXTCHARREPRESENTATIONCODE

Character code of the character that represents a 'line break lock' in the
Designer.

This value might have to be changed for code pages other than standard
western code page, as the default might be used for a printable character.
In most cases you can also use the Code 160 (NO BREAK SPACE).

LL_OPTION_MAXRTFVERSION

Windows or Microsoft applications are supplied with different RTF controls
(version numbers currently 1, 2, 3, 4 and 4.1) that support different features
and show a different behaviour.

Using this option you can set the maximum version number of the RTF control
to use. For example setting the option to 0x100 causes List & Label to load
RTF control version 1. Setting the option to 0x401 causes List & Label to try
loading RTF control version 4.1.

To not load any RTF control you should set this option to 0. Advantage is a
faster start up and using less resources.

This option must be called with job handle –1 before the fist List & Label job
has been opened.

LL_OPTION_METRIC

TRUE: List & Label Designer is set to metric system

API Reference

252

FALSE: List & Label Designer is set to inches

Default value depends on the system's setting.

See LL_OPTION_UNITS

LL_OPTION_NOAUTOPROPERTYCORRECTION

FALSE: Setting interdependent properties mutually influences each other.
(Default)

TRUE: Interdependent properties can be set independently.

This option is sometimes required when working with the DOM object model
to prevent automatic property switching. If e.g. the font of a paragraph is set
to a Chinese font, the property "Charset" would be automatically switched
accordingly. If this is not desired, use this option to switch the behavior.

LL_OPTION_NOFAXVARS

FALSE: The variables for fax are visible in the Designer (default).

TRUE: The variables for fax are not visible in the Designer.

LL_OPTION_NOFILEVERSIONUPGRADEWARNING

This option defines the behavior of the Designer when opening a project file
from an older version of List & Label.

TRUE: Conversion takes place without user interaction.

FALSE: A warning box is displayed to the user, indicating that the project file
will not be editable by an older version of List & Label once it has been saved
with the current version (default).

LL_OPTION_NOMAILVARS

FALSE: The variables for email are visible in the Designer (default).

TRUE: The variables for email are not visible in the Designer.

LL_OPTION_NONOTABLECHECK

TRUE: For a list project, List & Label does not check whether at least one table
object is present (default).

FALSE: List & Label performs the check and returns
LL_ERR_NO_TABLEOBJECT if the project contains no table.

LL_OPTION_NOPARAMETERCHECK

TRUE: List & Label does not check the parameters passed to its DLL
functions, which results in a higher processing speed.

Function Reference

253

FALSE: The parameters will be checked (default).

LL_OPTION_NOPRINTERPATHCHECK

TRUE: List & Label does not check if the printers that are relevant for the
project exists. If for example network printers are used in the project, that are
currently not available, waiting time will occur.

FALSE: List & Label checks if the printers that are relavant for the project exist
(default).

LL_OPTION_NOPRINTJOBSUPERVISION

With this option monitoring of the print jobs can be switched on (see
LL_INFO_PRINTJOBSUPERVISION). Default: TRUE.

LL_OPTION_NOTIFICATIONMESSAGEHWND

Sets the window that is to receive notification messages (callbacks) when no
callback procedure is explicitly set.

Usually events are sent to the first non-child window, starting with the
window handle given in LlDefineLayout() or LlPrintWithBoxStart(). You can
modify the destination with this call.

Default: NULL (default behavior)

LL_OPTION_NULL_IS_NONDESTRUCTIVE

List & Label handles NULL-values according to the SQL-92 specification where
possible. An important effect of that is, that functions and operators, which
get NULL-values as parameter or operator generally also return NULL as the
result. An example is the following Designer formula:

Title+" "+Firstname+" "+Lastname

If Title is filled with NULL, the result of the formula is also NULL according to
the standard. As it often can be desired to get

Firstname+" "+Lastname

instead, the option LL_OPTION_NULL_IS_NONDESTRUCTIVE defines that
NULL-values do not result in the complete expression to become NULL
(against the specification) but according to the data type will become "0", an
empty string or an invalid date. The better alternative is however to work with
NULLSafe() Designer functions, where the replacement value can be defined
exactly in case of NULL.

TRUE: NULL-values will be displayed by replacement values.

FALSE: NULL-values as operators or parameter result in NULL as function
value (default).

API Reference

254

LL_OPTION_PHANTOMSPACEREPRESENTATIONCODE

Character code of the character that represents a 'phantom space' in the
Designer.

This value might have to be changed for code pages other than standard
Western code page, as the default might be used for a printable character.

LL_OPTION_PRINTERDCCACHE_TIMEOUT_SECONDS

Determines how long (in seconds) printer device contexts are cached. Please
note that some printers do not start a print job before the corresponding
device context is closed. For these, you might want to change this setting to
0. The default value is 60.

LL_OPTION_ PRINTERDEVICEOPTIMIZATION

TRUE: Printers that are effectively equal concerning their DEVMODE structs
are optimized away (default). This also means that print jobs may be collated
even if there are pages with different printer settings in between. To prevent
this from happening, you may switch this option to FALSE.

FALSE: All printers are shown, print jobs are not collated.

LL_OPTION_PROHIBIT_USERINTERACTION

TRUE: No message boxes and dialogs will be displayed. Message boxes will
automatically return the default value. This option is usually set automatically
in webserver environments. If the webserver detection should fail for some
reason, you can manually force the non-UI mode via this option.

FALSE: Message boxes and dialogs are displayed (default).

LL_OPTION_PROJECTBACKUP

TRUE: A backup file is generated during editing in the Designer (default).

FALSE: No backup file is generated.

LL_OPTION_PRVZOOM_LEFT, LL_OPTION_PRVZOOM_TOP,
LL_OPTION_PRVZOOM_WIDTH, LL_OPTION_PRVZOOM_HEIGHT

Preview: the rectangle coordinates of the preview window in percentage of
the screen. If this is not set (set to -1), the positions of the window when it
was last closed will be used.

LL_OPTION_PRVRECT_LEFT, LL_OPTION_PRVRECT_TOP,
LL_OPTION_PRVRECT_WIDTH, LL_OPTION_PRVRECT_HEIGHT

The same in screen pixels.

Function Reference

255

LL_OPTION_PRVZOOM_PERC

Preview: initial zoom factor in percentage (default: 100). To zoom to page
width, set the value to -100.

LL_OPTION_REALTIME

TRUE: Time() and Now() will always use the current time

FALSE: The time will be fixed once when the project is loaded (default)

LL_OPTION_RESETPROJECTSTATE_FORCES_NEW_DC

TRUE: The output device context will be created new after
LlPrintResetProjectState() (default).

FALSE: The device context is preserved after LlPrintResetProjectState(). Is not
supported by all printers, but results in increased performance with merge
print.

LL_OPTION_RESETPROJECTSTATE_FORCES_NEW_PRINTJOB

TRUE: A new print job is forced after LlPrintResetProjectState(). This option is
especially of use if the same project is printed consecutively multiple times
and when it is important that every one of the prints creates its own job in the
spooler.

FALSE: Multiple reports can be merged into one print job. A new print job is
only created if it is necessary due to duplex prints (default).

LL_OPTION_RETREPRESENTATIONCODE

Character code of the character that represents a 'new line' in the Designer.

This value might have to be changed for code pages other than standard
Western code page, as the default might be used for a printable character.

LL_OPTION_RIBBON_DEFAULT_ENABLEDSTATE

TRUE: Starting with Windows Vista, the Designer and the print preview use
the Windows Ribbon framework. The Ribbon may be switched off in the
project's options dialog (default).

FALSE: Usage of the Ribbon has to be enabled explicitly in the project's
options dialog.

LL_OPTION_RTFHEIGHTSCALINGPERCENTAGE

Percentage value to wrap RTF text a bit earlier so that MS Word does show
RTF text completely (default: 100).

API Reference

256

LL_OPTION_SCALABLEFONTSONLY

Here you can choose which fonts can be selected in font selection dialogs:
only scalable fonts (TrueType and Vector fonts, TRUE) or all (FALSE).

Raster fonts have the disadvantage of not being scalable, so the preview may
not appear as expected.

Default: TRUE

LL_OPTION_SETCREATIONINFO

List & Label can store some information about the user (user and computer
name, date and time of creation as well as last modification) in the project file
and the preview file. This can be important for tracing modifications.

TRUE: Save info (default)

FALSE: Suppress info

LL_OPTION_SHOWPREDEFVARS

TRUE: The internal variables of List & Label will be listed in the variable
selection dialog of the formula wizard (default).

FALSE: These will be suppressed.

LL_OPTION_SKETCH_COLORDEPTH

This option sets the color depth of the sketch files for the file selection
dialogs. Default is 8, i.e. 256 colors. 32 would be true color.

LL_OPTION_SKIPRETURNATENDOFRTF

RTF texts may contain blank lines at the end.

TRUE: These are removed

FALSE: The blank lines are printed (default).

LL_OPTION_SORTVARIABLES

TRUE: The variables and fields in the selection dialog are sorted alphabetically.

FALSE: The variables and fields in the selection dialog are not sorted (default).

LL_OPTION_SPACEOPTIMIZATION

TRUE: List & Label will default the "space optimization" feature for new
paragraphs in text objects and new fields (default).

FALSE: The default state will be unchecked.

This does not apply to existing objects!

Function Reference

257

LL_OPTION_SUPERVISOR

TRUE: All menu options are allowed, and even locked objects are not locked.
This mode enables sections that are not accessible to the user to be used
without much additional programming.

FALSE: Limitations are valid (default)

LL_OPTION_SUPPORT_HUGESTORAGEFS

TRUE: The preview file size is not restricted. Preview files can only be read
starting with Windows 2000.

FALSE: The preview file size is restricted to 2 GB. Preview files can be read on
any of the supported operating systems (default).

LL_OPTION_SUPPORTS_PRNOPTSTR_EXPORT

TRUE: The user can choose a default exporter for the project, which will be
preset in the print options dialog

FALSE: Usually means that the application sets the default exporter

The default print medium is stored in the Project file.

Default: FALSE

LL_OPTION_TABLE_COLORING

LL_COLORING_DESIGNER: the coloring of list objects may only be carried out
by List & Label (default)

LL_COLORING_PROGRAM: the coloring of list objects is only carried out by
notifications or callback (see chapter "Notifications and Callbacks"); color
setting in the Designer is not possible

LL_COLORING_DONTCARE: the coloring is first of all carried out by the
program by notification or callback and then additionally by List & Label.

LL_OPTION_TABREPRESENTATIONCODE

Character code of the character that represents a 'tab' in the Designer.

This value might have to be changed for code pages other than standard
Western code page, as the default might be used for a printable character.

LL_OPTION_TABSTOPS

TRUE: List & Label replaces tabs (code 0x09) in a text with spaces. (Default)

FALSE: Tabs will be expanded by spaces for a column width of 8 characters.
This makes no sense for proportional fonts, however.

API Reference

258

LL_OPTION_UISTYLE

Sets the style of the Designer interface.

LL_OPTION_UISTYLE_STANDARD: Office 97® Look & Feel

LL_OPTION_UISTYLE_OFFICEXP: Office XP®/Visual Studio .NET® Look & Feel

LL_OPTION_UISTYLE_OFFICE2003: Office 2003® Look & Feel

LL_OPTION_UNITS

Description and values see LL_PRNOPT_UNIT.

LL_OPTION_USEBARCODESIZES

Some barcodes have size limitations (minimum and/or maximum sizes). If this
option is set to TRUE, the user is allowed to switch on the size limitation
feature so that when resizing the barcode object, only sizes in the standard
size range will be allowed.

LL_OPTION_USECHARTFIELDS

TRUE: Chart objects will get their data through the chart API.

FALSE: Compatible mode, charts get their data through LlPrintFields().
(Default)

Please read the hints in the Chart chapter of this manual.

LL_OPTION_USEHOSTPRINTER

TRUE: List & Label passes all printer device operations to the host application,
which then has more freedom but also has to work harder. See
LL_CMND_HOSTPRINTER.

FALSE: List & Label manages the printer device

LL_OPTION_USE_JPEG_OPTIMIZATION

TRUE: List & Label embeds JPEG files as JPEG stream into the preview (meta)
files. This leads to a significantly decreased file size but the meta files will only
be readable from List & Label and not from any third party picture editors
anymore. (Default).

FALSE: JPEG files will be embedded as bitmap records into the preview
(meta) files, which will result in significantly larger file sizes..

LL_OPTION_VARSCASESENSITIVE

TRUE: Variable and field names are case-sensitive

Function Reference

259

FALSE: Variable and field names are not case-sensitive ("Name" defines the
same variable as "NAME"). This option results in a slightly lower speed.
(Default)

LL_OPTION_XLATVARNAMES

TRUE: Special characters in variable and field names will be converted to '_'.
(Default)

FALSE: Variable and field names will not be modified. This has a speed
advantage, but you must make sure that the field and variable names do not
contain these characters. Should be switched to FALSE when using MBCS.

Example:

HLLJOB hJob;

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

v = LlSetOption(hJob, LL_OPTION_NEWEXPRESSIONS, TRUE);

//

LlJobClose(hJob);

See also:

LlGetOption, LlGetOptionString, LlSetOptionString

LlSetOptionString

Syntax:

INT LlSetOptionString (HLLJOB hJob, INT nMode, LPCTSTR pszValue);

Task:

Sets string options in List & Label.

Parameter:

hJob: List & Label job handle

nMode: Mode index, see below

pszValue: New value

Return Value:

Error code

Hints:

Most of the options need to be set before LlDefineLayout() and before the
functions LlPrint...Start(), preferably directly after
LlJobOpen()/LlJobOpenLCID(). If an option needs to be set at a different time,
this will be stated in that option's description.

API Reference

260

LL_OPTIONSTR_CARD_PRJDESCR

Use this parameter to set the description of the corresponding project type for
the file dialogs.

LL_OPTIONSTR_CARD_PRJEXT

The file extension for a file card project. Default "crd".

LL_OPTIONSTR_CARD_PRVEXT

The file extension for the bitmap of a file card project that will be shown in the
File Open dialog. Default "crv".

LL_OPTIONSTR_CARD_PRNEXT

The file extension for the printer definition file of a file card project. Default
"crp".

LL_OPTIONSTR_CURRENCY

This represents the string that is used as currency symbol in the fstr$()
function.

The default is the value of the user settings in the system, but will be set to
the respective locale value on LL_OPTION_LCID.

LL_OPTIONSTR_DECIMAL

This represents the string that is used as decimal char in the fstr$() function.

The default is the value of the user settings in the system, but will be set to
the respective locale value on LL_OPTION_LCID.

LL_OPTIONSTR_DEFDEFFONT

Sets the font to be used as default for the project font.

The parameter must have the following format:

"{(R,G,B),H,L}"
R = Red intensity, G = Green intensity, B = Blue intensity
H = Height in points, L = Comma-separated fields of the LOGFONT structure
(See SDK)

This DEFDEFFONT can be set using LL_OPTION_DEFDEFFONT as handle.

LL_OPTIONSTR_EXPORTS_ALLOWED

This property can be used to restrict the output list presented to the user in
the LlPrintOptionsDialog[Title]() dialog. Also, only the allowed export formats
can be configured in the designer.

Function Reference

261

Pass a semicolon-separated list of allowed export IDs, see LL_OPTIONSTR_-
EXPORTS_AVAILABLE

Example:

LlPrintStart(hJob,...,LL_PRINT_EXPORT,...);

// allow only printer and preview (EXPORT sets all bits)

LlSetOptionString(hJob, LL_OPTIONSTR_EXPORTS_ALLOWED, "PRN;PRV");

// Default should be preview!

LlPrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, "PRV");

// printer dialog allows user to change

LlPrintOptionsDialog(hJob,....);

// get the final medium:

LlPrintGetOption(hJob, LL_PRNOPTSTR_EXPORT, sMedium,

sizeof(sMedium));

// ...print job....

// finished

LlPrintEnd(hJob,0);

if (strcmp(sMedium,"PRV") == 0) ...

LL_OPTIONSTR_EXPORTS_ALLOWED_IN_PREVIEW

This property can be used to restrict the list of possible output formats in the
preview dialog.

Pass a semicolon-separated list of allowed export IDs, see LL_OPTIONSTR_-
EXPORTS_AVAILABLE

LL_OPTIONSTR_EXPORTS_AVAILABLE

This is a read-only property.

This function returns a semicolon-separated list of all output media (usually
"PRN;PRV;FILE" and the list of the export modules, if any are loaded by
LL_OPTIONSTR_LLXPATHLIST), for example "PRN;PRV;FILE;HTML;RTF"

The following IDs are predefined if the corresponding modules are installed:

Value Meaning

PRN Printing to printer

PRV Printing to Preview (file)

FILE Printing to printer file

DOCX Microsoft Word Format

HTML HTML Format

JQM HTML jQuery Mobile Format

MHTML Multi-Mime HTML Format

PDF Adobe PDF Format

PICTURE_BMP Bitmap Picture

PICTURE_EMF Metafile Picture (EMF)

PICTURE_JPEG JPEG Picture

API Reference

262

PICTURE_MULTITIFF Multi-TIFF Picture

PICTURE_PNG PNG Picture

PICTURE_TIFF TIFF Picture

RTF Rich Text Format (RTF)

TTY Pinwriter (TTY)

TXT Text (CSV) Format

TXT_LAYOUT Text (Layout) Format

XHTML XHTML/CSS Format

XLS Microsoft Excel Format

XML XML Format

XPS Microsoft XPS Format

LL_OPTIONSTR_EXPORTFILELIST

This is a read-only property.

After LlPrintEnd(), you can use this function to get a list of files that have been
created by the export process.

The return value is a semicolon-separated list of the path names of the files.

This list can be very large, so please allocate sufficient buffer and check the
return value of LlSetOption() on the error value (LL_ERR_BUFFERTOOSMALL).

LL_OPTIONSTR_HELPFILENAME

You can use this function to force the help file name, e.g. if you want to
display your own help file.

LL_OPTIONSTR_FAX_RECIPNAME, LL_OPTIONSTR_FAX_RECIPNUMBER,
LL_OPTIONSTR_FAX_SENDERNAME, LL_OPTIONSTR_FAX_SEN-
DERCOMPANY , LL_OPTIONSTR_FAX_SENDERDEPT, LL_OPTION-
STR_FAX_SENDERBILLINGCODE

These options set a default value for the variables in the fax dialog (Project >
Fax Variables). Any changes made by the user in the Designer will override
these values.

If the project is sent by fax, these expressions will be evaluated and directly
used as parameters for the MS Fax module.

As an alternative, these expressions are also available as variables
(LL.Fax.xxxx), so that they can be placed in the project in a special format to
be used by other fax drivers. For details, please see the fax software manual.

If these options are not set and the user has not entered any expressions in
the fax dialog, the "MS FAX" export will not be available.

Function Reference

263

LL_OPTIONSTR_LABEL_PRJDESCR

Use this parameter to set the description of the corresponding project type for
the file dialogs.

LL_OPTIONSTR_LABEL_PRJEXT

The file extension for a label project. Default "lbl".

LL_OPTIONSTR_LABEL_PRVEXT

The file extension for the bitmap of a label project that will be shown in the
File Open dialog. Default "lbv".

LL_OPTIONSTR_LABEL_PRNEXT

The file extension for the printer definition file of a label project. Default "lbp".

LL_OPTIONSTR_LICENSINGINFO

This option defines the licensing. You need to set your own personal license
key here.

This option must be set before you distribute your project! Further
information is available in the files "perslic.txt" and "redist.txt" in the List &
Label installation directory. For the List & Label trial version you should not
set this option.

LL_OPTIONSTR_LIST_PRJDESCR

Use this parameter to set the description of the corresponding project type for
the file dialogs.

LL_OPTIONSTR_LIST_PRJEXT

The file extension for a list project. Default "lst".

LL_OPTIONSTR_LIST_PRVEXT

The file extension for the bitmap of a list project that will be shown in the File
Open dialog. Default "lsv".

LL_OPTIONSTR_LIST_PRNEXT

The file extension for the printer definition file of a list project. Default "lsp".

LL_OPTIONSTR_LLFILEDESCR

Sets the description for List & Label preview files for the "save as" dialog in the
preview.

API Reference

264

LL_OPTIONSTR_LLXPATHLIST

This option defines the extension modules (LLX files) to be loaded. You must
pass a list of file paths, separated by semicolons, for the extension modules
that you want to use in your application.

The following extension modules are loaded automatically by default, i.e.
whenever opening a job or setting this option:

CMLL20PW.LLX
CMLL20HT.LLX
CMLL20EX.LLX
CMLL20OC.LLX

Additionally for the Professional and Enterprise Edition:

CMLL20BC.LLX

These files are loaded from the DLL's path.

You can use Wildcards ("?", "*") to load multiple modules simultaneously.

To suppress loading of a default extension, pass its file name preceded by a
"^", e.g. "^CMLL20PW.LLX". To suppress all default extensions, pass "^*" as
first "filename".

When this parameter is used for LlGetOptionString() you will get a list of
available extension modules (for example "CMLL20PW.LLX;CMLL20HT.LLX").

If debug mode is switched on, List & Label will issue the rules and tell you
why which module has been loaded or unloaded.

LL_OPTIONSTR_MAILTO

Can be used to preset the address of the recipient when sending the preview
file from the preview. Multiple recipients can be separated by ";".

LL_OPTIONSTR_MAILTO_CC

Can be used to preset the address of a CC recipient when sending the
preview file from the preview. Multiple recipients can be separated by ";".

LL_OPTIONSTR_MAILTO_BCC

Can be used to preset the address of a BCC recipient when sending the
preview file from the preview. Multiple recipients can be separated by ";".

LL_OPTIONSTR_MAITO_SUBJECT

Can be used to preset the subject when sending the preview file from the
preview.

Function Reference

265

LL_OPTIONSTR_NULLVALUE

Can be used to preset the representation of a NULL value at print time.
Default value: empty("").

LL_OPTIONSTR_PREVIEWFILENAME

Can be used to preset the name of the preview file. By default, the files are
created in the project file's directory or an alternative directory (see
LlPreviewSetTempPath()). The default file name is <Project file name>.LL.
This option can be used to preset another name that replaces the <Project file
name> part.

LL_OPTIONSTR_PRINTERALIASLIST

Allows you to define printer alias tables, i.e. tables that define which printers
are to be used if any one of the "default project" printers is not available.

To delete the table, pass NULL or an empty string ("") to this option.

For each printer, you can provide a translation table with the old printer and
one or more replacement printers. You can do this by calling this function
more than once, or by issuing multiple definitions for the individual printers,
separated by a line break "\n".

A table is defined by the line format:

"old printer=new printer 1[;new printer 2[;...]]"

so for example

"\\server\eti=\\server\eti1;\\server_eti2"

"\\server\a4fast=\\server\standard"

This list will cause List & Label to try the alias list "\\server\eti1;\\server_eti2" (in
that order) if the printer "\\server\eti" is not available, until a printer is available
or the list is finished. The original paper format will be used for the
replacement printers. The parameters are not case-sensitive.

LL_OPTIONSTR_PROJECTPASSWORD

Encrypts the project files to protect them against unauthorized use. The
password given here is used for the encryption. The password itself is not
stored in the project, so do not forget it!

You can store encrypted projects in unencrypted format in the Designer by
pressing a shift key when you save it. A password dialog will pop up and allow
you to enter the original password. This is useful for debugging or support
cases.

file://server/eti=/server/eti1;/server_eti2
file://server/a4fast=/server/standard
file://server/eti1;/server_eti2
file://server/eti

API Reference

266

The maximum password length is 5 characters in the range of 1 to 255 (ASCII
code), resulting in 40-bit encryption. The password is not (!) absolutely secure,
as it is passed by an API. However, the barrier to stealing project files is quite
high.

LL_OPTIONSTR_SAVEAS_PATH

The passed parameter will be used as default path for "save as" from the
preview. The path may contain path and file name.

LL_OPTIONSTR_SHORTDATEFORMAT

The string used to convert a date in a string in:

date$(<Date>, "%x")

and for automatic type conversion (LlExprEval(), Concat$())

Format and Default: See Windows API GetLocaleInfo(LOCALE_USER_-
DEFAULT, LOCALE_SSHORTDATE,...)

LL_OPTIONSTR_THOUSAND

This represents the string that is used as thousands separator in the fstr$()
function.

The default is the value of the user settings in the system, but this will be set
to the respective locale value on LL_OPTION_LCID.

LL_OPTIONSTR_VARALIAS

This option enables you to localize the field and variable names for the
Designer. The provided alias will be displayed within the Designer instead of
the field/variable name. Only the original names will be stored when saving
the file. The project can thus be localized by supplying suitable alias names.
The option string needs to be set for each name that should be localized in
the form "<alias>=<original name>", e.g.

LlSetOptionString(hJob, LL_OPTIONSTR_VARALIAS, "Vorname=FirstName");

LlDefineVariable(hJob, "FirstName", "John");

in order to pass a variable "FirstName" that should be displayed as "Vorname"
in the Designer.

To delete all passed alias names, just use

LlSetOptionString(hJob, LL_OPTIONSTR_VARALIAS, "");

The .NET, OCX and VCL components offer a custom dictionary API that makes
using this option even easier. See the components' help file for more
information.

Function Reference

267

Example:

HLLJOB hJob;

LlSetDebug(TRUE);

hJob = LlJobOpen(0);

// all label projects will be called <somewhat>.label

v = LlSetOptionString(hJob, LL_OPTIONSTR_LABEL_PRJEXT, "label");

// ...

LlJobClose(hJob);

See also:

LlGetOption, LlGetOptionString, LlSetOptionString

LlSetPrinterDefaultsDir

Syntax:

INT LlSetPrinterDefaultsDir (HLLJOB hJob, LPCTSTR pszDir);

Task:

Sets the path of the printer definition file, e.g. to use user-specific printer
settings in a network environment.

Parameter:

hJob: List & Label job handle

pszDir: Path name of the directory

Return Value:

Error code

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlSetPrinterDefaultsDir(hJob, "c:\\temp\\user");

if (LlPrintStart(hJob, LL_PROJECT_LIST, "c:\\test.lst",

LL_PRINT_NORMAL) == 0)

{

 <... etc ...>

 LlPrintEnd(hJob);

}

else

 MessageBox(NULL, "Error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlSetPrinterToDefault, LlPrintStart, LlPrintWithBoxStart, LlPrintCopyPrinter-
Configuration, LlPrintSetPrinterInPrinterFile

API Reference

268

LlSetPrinterInPrinterFile

Syntax:

INT LlSetPrinterInPrinterFile (HLLJOB hJob, UINT nObjType,

 LPCTSTR pszObjName, INT nPrinter, LPCTSTR pszPrinter,

 _PCDEVMODE pDM);

Task:

Replaces a printer in a printer configuration file by a new one or allows you to
set special printer parameters

Parameter:

hJob: List & Label job handle

nObjType: LL_PROJECT_LABEL, LL_PROJECT_CARD or LL_PROJECT_LIST

pszObjName: Project name

nPrinter: Printer index (0: range with "Page() == 1" [will be created
automatically if necessary], 1: default range, -1: creates only the default range
and deletes other ranges that may exist).

If the project contains multiple layout regions you can use indices starting
from 99, where 99 will set the printer for all regions, 100 for the first, 101 for
the second and so on.

pszPrinter: Printer name

pDM: Address of new DEVMODE structure. If NULL, the default settings of
the printer will be used.

Return Value:

Error value

Hints:

This function allows you to define the printer that will be used for printing. If
the printer configuration file does not exist, it will be created. By "oring" the
project type with LL_PRJTYPE_OPTION_-FORCEDEFAULTSETTINGS you can
force the printer's default settings for the print job.

As the printer configuration file will be used by LlPrint[WithBox]Start(), the
function must be called before this function.

The DEVMODE structure is defined in the Windows API help file.

Due to the possibility to define layout regions in the Designer the practical
benefit of this function has been quite limited. We recommend to use the LL
object model according to chapter "Using the DOM-API (Professional/Enter-
prise Edition Only)" to access the layout regions and the associated printers.

Function Reference

269

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlSetPrinterInPrinterFile(hJob, LL_PROJECT_LABEL, "test.lbl", -1,

 "Label Printer", NULL);

<... etc ...>

LlJobClose(hJob);

See also:

LlSetPrinterToDefault, LlPrintStart, LlPrintWithBoxStart, LlPrintCopyPrinter-
Configuration, LlPrintSetPrinterDefaultsDir, GetPrinterFromPrinterFile

LlSetPrinterToDefault

Syntax:

INT LlSetPrinterToDefault (HLLJOB hJob, UINT nObjType,

 LPCTSTR lpszObjName);

Task:

Deletes the printer definition file, so that List & Label uses the default printer
set in the project the next time the project is used.

Parameter:

hJob: List & Label job handle

nObjType: LL_PROJECT_LABEL, LL_PROJECT_CARD or LL_PROJECT_LIST

lpszObjName: The file name of the project

Return Value:

Error code

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlSetPrinterToDefault(hJob, LL_PROJECT_LIST, "test.lst");

if (LlPrintStart(hJob, LL_PROJECT_LIST, "test",

 LL_PRINT_NORMAL) == 0)

{

 <... etc ...>

 LlPrintEnd(hJob);

}

else

 MessageBox(NULL, "Error", "List & Label", MB_OK);

LlJobClose(hJob);

See also:

LlSetPrinterDefaultsDir, LlPrintStart, LlPrintWithBoxStart

API Reference

270

LlViewerProhibitAction

Syntax:

INT LlViewerProhibitAction (HLLJOB hJob, INT nMenuID);

Task:

Removes buttons from the preview.

Parameter:

hJob: List & Label job handle

nMenuID: ID of the button you wish to remove. The IDs of the menu items in
List & Label can be found in the file MENUID.TXT in your List & Label
installation.

Return value:

Error code

Hints:

A 0 as menu ID clears the list of menu items to be suppressed.

See also:

LlPreviewDisplay, LlPreviewDisplayEx

LlXGetParameter

Syntax:

INT LlXGetParameter (HLLJOB hJob, INT nExtensionType,

 LPCTSTR pszExtensionName, LPCTSTR pszKey, LPTSTR pszBuffer,

 UINT nBufSize);

Task:

Gets parameters from a specific extension module.

Parameter:

hJob: List & Label job handle

nExtensionType: Type of extension

Value Meaning

LL_LLX_EXTENSIONTYPE_EXPORT Export module

LL_LLX_EXTENSIONTYPE_BARCODE 2D barcode module

pszExtensionName: Name of the extension ("HTML", "RTF", "PDF417", ...)

pszKey: Name of the parameter

pszBuffer: Pointer to a buffer

Function Reference

271

nBufSize: Size of the buffer

Return value:

Error code

Hints:

The keys known by the extension modules are specific to them. Please refer
to the documentation for the respective module.

See chapter "Important Remarks on the Function Parameters of DLLs"
concerning the buffer return value.

See also:

LlXSetParameter

LlXSetParameter

Syntax:

INT LlXSetParameter (HLLJOB hJob, INT nExtensionType,

 LPCTSTR pszExtensionName, LPCTSTR pszKey, LPCTSTR pszValue);

Task:

Sets parameters in a specific extension module.

Parameter:

hJob: List & Label job handle

nExtensionType: Type of extension

Value Meaning

LL_LLX_EXTENSIONTYPE_EXPORT Export module

LL_LLX_EXTENSIONTYPE_BARCODE 2D barcode module

pszExtensionName: Name of the extension ("HTML", "RTF", "PDF417", ...)

pszKey: Name of the parameter

pszValue: Value of the parameter

Return value:

Error code

Hints:

The keys known by the extension modules are specific to them. Please refer
to the documentation for the respective module.

Using this function, you can preset certain options of a module, for example
the path of the output file.

API Reference

272

See also:

LlXGetParameter

6.2 Callback Reference

LL_CMND_DRAW_USEROBJ

Task:

Tells the program to draw the object defined by the user.

Activation:

LlDefineVariableExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ,

<Parameter>);

LlDefineFieldExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ,

<Parameter>);

or

LlDefineVariableExt(hJob, <Name>, <Content>,

LL_DRAWING_USEROBJ_DLG,<Parameter>);

Parameters:

Pointer to an scLlDrawUserObj structure:

_nSize: Size of the structure, sizeof(scLlDrawUserObj)

_lpszName: Name of the variable assigned to the object

_lpszContents: Text contents of the variable which is assigned to the object.
This value is only valid if the variable has been defined by
LlDefineVariableExt(), otherwise the _hPara value is valid.

_lPara: lPara of the variable which is assigned to the object
(LL_DRAWING_USEROBJ or LL_DRAWING_USEROBJ_DLG). Refers to the 4th
parameter of the call LlDefineVariableExt().

_lpPtr: lpPtr of the variable which is assigned to the object. Refers to the 5th
parameter of the call LlDefineVariableExt().

_hPara: Handle contents of the variable which is assigned to the object. This
value is valid if the variable has been defined by LlDefineVariableExtHandle(),
otherwise the value _lpszContents is valid.

_bIsotropic: TRUE: the object should be drawn undistorted FALSE: the
drawing should be fitted into the rectangle

_lpszParameters: 1) for user-defined objects as table field: NULL
2) for LL_DRAWING_USEROBJ: Pointer to an empty string
3) for LL_DRAWING_USEROBJ_DLG: Pointer to the string the programmer
has returned at LL_CMND_EDIT_USEROBJ.

Callback Reference

273

_hPaintDC: Device Context for the printout

_hRefDC: Device Context for references

_rcPaint: Rectangle in which the object should be drawn. The mapping mode
is in the normal drawing units, mm/10, inch/100 or inch/1000.

_nPaintMode: 1: on Designer-preview 0: on Printer/Multi-page-preview

Return Value (_lResult):

0

Hints:

In this callback no List & Label function may be called which will produce
output (LlPrint(), etc.))! Functions like LlPrintGetCurrentPage(),
LlPrintGetOption() or LlPrintEnableObject() are allowed.

See: Hints for the use of GDI-objects

Example:

case LL_CMND_DRAW_USEROBJ:

 pSCD = (PSCLLUSEROBJ)pSC->_lParam;

 FillRect(pSCD->_hPaintDC, pSCD->_rcPaint,

GetStockObject(atoi(lpszContents)));

 break;

LL_CMND_EDIT_USEROBJ

Task:

Requests the program to start an object-specific dialog through which the
user can enter and change the corresponding presentation parameters.

Activation:

LlDefineVariableExt(hJob,<Name>,<Contents>, LL_DRAWING_USEROBJ_DLG,

<Parameter>);

Parameters:

Meaning of the parameter lParam:

Pointer to an scLlEditUserObj structure:

_nSize: Size of the structure, sizeof(scLlEditUserObj)

_lpszName: Name of the variable which is assigned to the object

_lPara: lPara of the variable assigned to the object (LL_DRAWING_USEROBJ
or LL_DRAWING_USEROBJ_DLG). Is identical to the 4th parameter of the call
LlDefineVariableExt().

_lpPtr: lpPtr of the variable assigned to the object. This refers to the 5th
parameter of the call LlDefineVariableExt().

API Reference

274

_hPara: Handle-contents of the variable assigned to the object. This value is
only valid if the variable has been defined by LlDefineVariableExtHandle(),
otherwise the value _lpszContents is valid.

_bIsotropic: TRUE: the object should be drawn undistorted. FALSE: the
drawing should be fitted optimally into the rectangle

_hWnd: Window-handle of the dialog. This should be taken as parent-handle
of your dialogs.

_lpszParameters: Pointer to a buffer with the maximum size _nParaBufSize.

_nParaBufSize: Size of the buffer allocated by List & Label.

Return Value:

0

Hints:

This callback is sent if objects that are set to a variable of type
LL_DRAWING_USEROBJ_DLG need to be edited.

In this callback no List & Label function may be called which produces output
(LlPrint(), etc.) Functions like LlPrintGetCurrentPage(), LlPrintGetOption() or
LlPrintEnableObject() are allowed.

See: Hints on the use of GDI-objects.

The editing of the _bIsotropic flag is optional, as this can be set by the user in
the calling dialog. If you change this flag, the change will be adopted by List &
Label.

_lpszParameter points to string in which the values entered in the last dialog
call are stored. You can copy your parameter string into the buffer when it is
smaller or the same size as the buffer. Otherwise, you can change the pointer
value to a pointer that points to your data. The problem of a longer parameter
string is that it cannot be released by List & Label if it is an allocated storage
area. (Basic principle: you can pass up to 1024 characters. The string cannot
be extended, superfluous characters are cut off).

The characters permitted in the parameter string are all printable characters,
i.e. characters with codes > = 32 (' ').

Example:

case LL_CMND_EDIT_USEROBJ:

 pSCE = (PSCLLEDITUSEROBJ)pSC->_lParam;

 lpszNewParas = MyDialog(pSCE->_hWnd, ...,);

 if (strlen(lpszNewParams) < pSCE->_lpszParameters)

 strcpy(pSCE->_lpszParameters, lpszNewParas);

 else

Callback Reference

275

 pSCE->_lpszParameters = lpszNewParas;

 break;

LL_CMND_ENABLEMENU

Task:

Allows the host application to disable menu items

Activation:

Always activated

Parameters:

Meaning of the parameter lParam:

lParam: menu handle

Hints:

This callback is called when List & Label changes or updates the menu. The
application can then enable or disable menu items previously inserted by
LL_CMND_MODIFYMENU.

Example:

case LL_CMND_ENABLEMENU:

 if (<whatever>)

 EnableMenuItem(hMenu, IDM_MYMENU, MF_ENABLED|MF_BYCOMMAND);

 else

 EnableMenuItem(hMenu, IDM_MYMENU,

MF_DISABLED|MF_GRAYED|MF_BYCOMMAND);

 break;

LL_CMND_EVALUATE

Task:

Asks the program for the interpretation of the contents of the function
External$() in an expression.

Activation:

While printing, when using an External$() function.

Parameters:

lParam is a pointer to an scLlExtFct structure:

_nSize: Size of the structure, sizeof(scLlExtFct)

_lpszContents: Parameter of the function External$()

_bEvaluate: TRUE if the contents are to be evaluated
FALSE if only a syntax-test is to be carried out.

API Reference

276

_szNewValue: Array where the result is stored as a zero-terminated string.
Default: empty

_bError: TRUE: error occurred. FALSE: no error occurred.
Default: FALSE

_szError: Array where a possible error definition can be stored, which can be
requested later with LlExprError(). This text is also displayed to the user in
the Designer during the automatic syntax check in case of an error.

Return Value (_lResult):

0 (always)

Hints:

If, for example, the expression in a formula is

 Name + ", " + External$(Name + ", " + forename)

then the parameter is the evaluated result of the formula 'Name + ", " +
forename', in this case for example 'Smith, George'.

Important: the return fields must be zero-terminated and may not exceed the
maximum length (16385 characters incl. termination for the return value, 128
characters incl. zero-termination for the error string).

LL_CMND_GETVIEWERBUTTONSTATE

Task:

Using this callback, List & Label asks the application about button states of
the preview's toolbar buttons.

Activation:

Always activated

Parameters:

HIWORD(lParam) = Tool button ID

LOWORD(lParam) = State defined by List & Label

Return Value (_lResult):

New State Meaning

0 no change

1 enabled

2 disabled

-1 hidden

Callback Reference

277

Hints:

This function will be called by the preview by List & Label. The IDs of the
menu items in List & Label can be found in the file MENUID.TXT of your List &
Label installation.

Example:

case LL_CMND_GETVIEWERBUTTONSTATE:

 switch (HIWORD(lParam))

 {

 case 112:

 // don't allow one-page print:

 return(-1);

 }

 break;

LL_CMND_HELP

Task:

Enables the programmer to use an external help system instead of List &
Label's own help system.

Activation:

LlSetOption(hJob, LL_OPTION_CALLBACKMASK, <other Flags> |

LL_CB_HELP);

Parameters:

HIWORD(lParam):

Value Meaning

HELP_CONTEXT LOWORD(lParam) is then the context
number of the help topic

HELP_INDEX the user wants to see the index of the help
file

HELP_HELPONHELP the user queries the help summary

Return Value (_lResult):

0: Return to List & Label to display its help
1: List & Label should do nothing

Example:

case LL_CMND_HELP:

 WinHelp(hWnd, "my.hlp", HIWORD(lPara), LOWORD(lPara));

 pSC._lResult = 1;

 break;

API Reference

278

LL_NTFY_EXPRERROR

Task:

Allows the host application to indicate whether an expression error is found
when the project is loaded.

Parameters:

lParam points to the error string that the wizard should display.

Return Value (_lResult):

ignored, always 0

LL_CMND_HOSTPRINTER

Task:

Allows the user to define one (or two) device contexts for the printer, which
are then used by List & Label instead of its own printer management

Activation:

LlSetOption(hJob, LL_OPTION_USEHOSTPRINTER, 1)

Parameters:

lParam is a pointer to a struct of type scLlPrinter:

_nSize: sizeof of the structure, sizeof(scLlPrinter)

_bFirst: BOOL, indicates whether the printer for page 1 or the following
pages is meant

_nCmd: subcommand, see below

_hWnd: handle of the parent window, needed for LL_PRN_EDIT

_hDC: DC-handle for the functions LL_PRN_CREATE_DC,
LL_PRN_DELETE_DC and LL_PRN_RESET_DC

_nOrientation: printer paper orientation (DMORIENT_HORIZONTAL, DMORI-
ENT_LANDSCAPE), used for LL_PRN_SET_ORIENTATION and LL_PRN_GET_-
ORIENTATION

_bPhysPage: BOOL, indication of whether the physical or the printable area is
to be used.

_nBufSize, _pszBuffer: points to memory where the requested texts can
be stored: used for LL_PRN_GET_DEVICENAME, LL_PRN_GET_DRIVERNAME
and LL_PRN_GET_PORTNAME

Callback Reference

279

_nUniqueNumber: unique number for this printer instance. List & Label might
request some printers several times, so this ID can be used to find out which
printer is meant.

_nUniqueNumberCompare: the unique number of the printer to be
compared with the current one (in case of a LL_PRN_COMPARE_PRINTER
command, you need to return whether the printers in nUniqueNumber and
nUniqueNumberCompare are the same).

_nPaperFormat: paper format (see DEVMODE.dmPaperSize)

_xPaperSize: paper size in mm/10 (horizontal)

_yPaperSize: paper size in mm/10 (vertical)

Return value:

depends on the subcommand in _nCmd:

Value Meaning

LL_PRN_CREATE_DC the printer DC shall be created and stored
in _hDC. No change of the return value.

LL_PRN_DELETE_DC the printer DC (in _hDC) can be destroyed.
No change of the return value.

LL_PRN_SET_ORIENTATION the paper orientation shall be set to the
orientation given in _nOrientation. The
printer DC is stored in _hDC. No change of
the return value.

LL_PRN_GET_-
ORIENTATION

the current paper orientation should be
stored in _nOrientation as DMORIENT_-
PORTRAIT or DMORIENT_LANDSCAPE. No
change of the return value.

LL_PRN_EDIT reserved (not yet used)

LL_PRN_GET_-
DEVICENAME

copy the device name of the printer into
_pszBuffer (optional). No change of the
return value.

LL_PRN_GET_-
DRIVERNAME

copy the driver name of the printer into
_pszBuffer (optional). No change of the
return value.

LL_PRN_GET_PORTNAME copy the port name of the printer into
_pszBuffer (optional). No change of the
return value.

LL_PRN_RESET_DC the printer DC shall be reset (see API
function ResetDC()). The new value (usually
the same in current Windows versions)
should be stored into _hDC. No change of
the return value.

API Reference

280

LL_PRN_COMPARE_-
PRINTER

List & Label needs this function to decide
whether the printer for the first page is the
same as the one for the following pages.
You must compare the printers (for
example, DEVMODE structure members)
with the IDs in nUniqueNumber and
nUniqueNumberCompare. Return 1 for
equal, 0 for different.

LL_PRN_GET_-
PAPERFORMAT
LL_PRN_SET_-
PAPERFORMAT:

shall return/set paper format
(_nPaperFormat, _xPaperSize and
_yPaperSize)

Hints:

This callback is rarely used and can be ignored for nearly all cases.

Example:

case LL_CMND_HOSTPRINTER:

{

 scLlPrinter* pPrn = scLlPrinter*)sc._lParam;

 if (pPrn->_nSize == sizeof(scLlPrinter))

 {

 switch (pPrn->_nCmd)

 {

 case LL_PRN_CREATE_DC:

 UtilDebug("LL_PRN_CREATE_DC(%d)\n", pPrn->_bFirst);

 pPrn->_hDC = CreateDC("PSCRIPT.DRV", "x.ps",

 "\\\\srv\\pr", NULL);

 break;

 case LL_PRN_DELETE_DC:

 UtilDebug("LL_PRN_DELETE_DC(%d)\n", pPrn->_bFirst);

 DeleteDC(pPrn->_hDC);

 break;

 case LL_PRN_SET_ORIENTATION:

 UtilDebug("LL_PRN_SET_ORIENTATION","(%d, %d)\n",

 pPrn->_bFirst, pPrn->_nOrientation);

 // not in this trivial example

 break;

 case LL_PRN_GET_ORIENTATION:

 UtilDebug("LL_PRN_GET_ORIENTATION","(%d)\n",

 pPrn->_bFirst);

 // not in this trivial example

 break;

 case LL_PRN_GET_DEVICENAME:

 UtilDebug("LL_PRN_GET_DEVICENAME","(%d)\n",

 pPrn->_bFirst);

 chk_strncpy(pPrn->_pszBuffer, "TestDevice",

 pPrn->_nBufSize);

 break;

 case LL_PRN_GET_DRIVERNAME:

 UtilDebug("LL_PRN_GET_DRIVERNAME", "(%d)\n",

 pPrn->_bFirst);

 chk_strncpy(pPrn->_pszBuffer, "TestDriver",

 pPrn->_nBufSize);

file:///srv/pr

Callback Reference

281

 break;

 case LL_PRN_GET_PORTNAME:

 UtilDebug("LL_PRN_GET_PORTNAME(%d)\n", pPrn->_bFirst);

 chk_strncpy(pPrn->_pszBuffer, "TestPort",

 pPrn->_nBufSize);

 break;

 case LL_PRN_RESET_DC:

 UtilDebug("LL_PRN_RESET_DC(%d)\n", pPrn->_bFirst);

 // not in this trivial example

 break;

 case LL_PRN_COMPARE_PRINTER:

 // the same printer for first and other pages

 sc._lReply = 1;

 // We would need a vector of printers

 // (using _nUniqueNumber) for different printers

 break;

 }

 }

}

break;

// chk_strncpy() is a "corrected" strncpy-function,

// which makes sure that the

// destination is always '\0'-terminated.

// UtilDebug is an example function for Debugging Output

LL_CMND_CHANGE_DCPROPERTIES_CREATE

Task:

The host application can modify the printer DC.

Parameters:

lParam pointer to a structure of type scLlPrinter. The following fields have
meaningful values:

_nSize: sizeof of the structure, sizeof(scLlPrinter)

_hDC: printer DC

Return Value:

ignored, always 0

Hints:

This callback is rarely used and can be ignored for nearly all cases.
It is called when List & Label has created a printer DC (after CreateDC()).

LL_CMND_CHANGE_DCPROPERTIES_DOC

Task:

The host application can modify the printer DC.

API Reference

282

Parameters:

Meaning of the parameter lParam:

Pointer to a structure of type scLlPrinter. The following fields have meaningful
values:

_nSize: sizeof of the structure, sizeof(scLlPrinter)

_hDC: printer DC

Return Value:

ignored, always 0

Hints:

This callback is rarely used and can be ignored for nearly all cases.
It is called when List & Label has called StartDoc().

_nPaperFormat is the Job-ID you can use to obtain information about the
spooler progress.

LL_CMND_CHANGE_DCPROPERTIES_PAGE

Task:

The host application can modify the printer DC.

Parameters:

Meaning of the parameter lParam:

Pointer to a structure of type scLlPrinter. The following fields have meaningful
values:

_nSize: sizeof of the structure, sizeof(scLlPrinter)

_hDC: printer DC

Return Value:

ignored, always 0

Hints:

This callback is rarely used and can be ignored for nearly all cases.
It is called when List & Label has called StartPage().

Callback Reference

283

LL_CMND_MODIFYMENU

Task:

Allows the application to modify List & Label's menu. This callback is
supported for reasons of compatability, to extend the Designer the use of
LlDesignerAddAction() is recommended.

Activation:

Always activated

Parameters:

Meaning of the parameter lParam:

lParam: menu handle

Return Value:

Ignored, always 0

Hints:

This function is called when List & Label created its menu. The application can
add or delete menu items.

The IDs of the menu items in List & Label can be found in the file MENUID.TXT
of your List & Label installation. User-defined menus should use IDs above
10100.

This callback is only included for compatibility reasons, to expand the
Designer preferably use LlDesignerAddAction().

Example:

case LL_CMND_MODIFYMENU:

 DeleteMenu(_hMenu, IDM_HELP_CONTENTS, MF_BYCOMMAND);

 DeleteMenu(_hMenu, IDM_HELP_INDEX, MF_BYCOMMAND);

 DeleteMenu(_hMenu, IDM_HELP_HELPONHELP, MF_BYCOMMAND);

 break;

LL_CMND_OBJECT

Task:

Enables the programmer to draw something before or after List & Label into or
near the object rectangle or to hide the object during printing.

This function allows many modifications to objects and is the so-called "do-it-
all" for object representations.

API Reference

284

Activation:

LlSetOption(hJob, LL_OPTION_CALLBACKMASK, <other Flags> |

LL_CB_OBJECT);

Parameters:

lParam points to an scLlObject structure:

_nSize: Size of the structure, sizeof(scLlObject)

_nType: Type of object:

Object Meaning

LL_OBJ_TEXT Text

LL_OBJ_RECT Rectangle

LL_OBJ_LINE Line object

LL_OBJ_BARCODE Barcode object

LL_OBJ_DRAWING Drawing object

LL_OBJ_TABLE Table

LL_OBJ_RTF RTF object

LL_OBJ_TEMPLATE Template bitmap

LL_OBJ_ELLIPSE Ellipse/Circle

_lpszName: Name of the object. Either the name given in the Designer or a
text like "TABLE (<Rectangle measures>)" - the text which is printed in the
status line of the Designer for this object if it is selected.

_bPreDraw: TRUE for a call before List & Label draws the object.
FALSE for a call after List & Label has drawn the object.

_hPaintDC: Device Context for the print

_hRefDC: Device Context for references

_rcPaint: Rectangle in which the object is drawn. The mapping mode is in the
normal drawing units, mm/10, inch/100 or inch/1000.

Return Value (_lResult):

Value of _bPreDraw _lResult

TRUE 0: okay
1: object is not to be drawn (in this case
hidden)

FALSE always 0

Hints:

In this callback no List & Label function may be called which will produce
output (LlPrint(), etc.)! Functions like LlPrintGetCurrentPage() or
LlPrintGetOption() are allowed. See: Hints on the use of GDI objects.

Callback Reference

285

This function is called twice per object, once with _bPreDraw = TRUE, then
with _bPreDraw = FALSE.

_rcPaint may vary between these calls if the object size becomes smaller
(text, table object) or the appearance condition does not match!

_bPreDraw = TRUE:

Use: you can draw an individual background or hide the object.

If you change _rcPaint, these modifications will have consequences for the
size of the object, as the object is drawn by List & Label in the given rectangle.

_bPreDraw = FALSE:

Use: you can draw an individual background and/or shade, as only then is the
true size of the object known.

The rectangle _rcPaint is the correct object rectangle. If you change _rcPaint
then this affects the linked objects, as the data from _rcPaint is used as object
rectangle, which might influence the coordinates of spatially linked objects!

Example:

case LL_CMND_OBJECT:

 pSCO = (PSCLLOBJECT)pSC->_lParam;

 if (pSCO->_nType == LL_OBJ_RECT &&

 pSCO->_bPreDraw == FALSE)

 {

 FillRect(pSCO->_hPaintDC, pSCF->_rcPaint,

 GetStockObject(LTGRAY_BRUSH);

 }

 break;

LL_CMND_PAGE

Task:

Allows the programmer to place additional output on the page. This is useful
for printing labels, for example, as in this way you can "paint" additional
information onto a page (page number, printout time, "demo" text, individual
watermarks etc...)

Activation:

LlSetOption(hJob, LL_OPTION_CALLBACKMASK, <other flags> |

LL_CB_PAGE);

Parameters:

lParam points to an scLlPage structure:

_nSize: Size of structure, sizeof(scLlPage)

_bDesignerPreview: TRUE if the call takes place from the Designer preview
FALSE if the call takes place during the WYSIWYG-preview or print.

API Reference

286

_bPreDraw: TRUE for a call, before List & Label draws the page.
FALSE for a call after List & Label has finished the page.

_bDesignerPreview: TRUE if the call takes place from the Designer preview
FALSE if the call takes place during the WYSIWYG-preview or print.

_hPaintDC: Device Context for the print

_hRefDC: Device Context for references

Return Value:

0

Hints:

In this callback no List & Label function may be called which will produce
output as a result (LlPrint(), etc.)! Functions like LlPrintGetCurrentPage(),
LlPrintGetOption() or LlPrintEnableObject() are allowed.

See: Hints on the use of GDI-objects.

This function is called twice per page, once with _bPreDraw = TRUE, then
with _bPreDraw = FALSE.

The page size can be determined by the function GetWindowExt(). Don't
forget: use the hRefDC!

If you change the window origin of the hRefDC for _bPreDraw = TRUE with
SetWindowOrg(), this affects the whole page. In this way you can define a
different margin for even/odd pages. This relocation only affects the
WYSIWYG viewer and printout, not the Designer preview.

Example:

case LL_CMND_PAGE:

 pSCP = (PSCLLPAGE)pSC->_lParam;

 if (pSCP->_bPreDraw && (LlPrintGetCurrentPage(hJob) % 2) == 1)

 SetWindowOrg(pSCP->_hPaintDC, -100, 0);

 break;

LL_CMND_PROJECT

Task:

Enables the programmer to place additional drawings in a label or file card
project (an individual label, for example).

This callback only occurs with label and file card projects. With list objects, it
would be identical to LL_CMND_PAGE.

Activation:

LlSetOption(hJob, LL_OPTION_CALLBACKMASK,

 <other Flags> | LL_CB_PROJECT);

Callback Reference

287

Parameters:

lParam points to an scLlProject structure:

_nSize: Size of the structure, sizeof(scLlProject)

_bPreDraw: TRUE for a call before List & Label draws the page.
FALSE for a call after List & Label has drawn the page.

_bDesignerPreview: TRUE if the call takes place from the Designer preview.
FALSE if the call takes place during the WYSIWYG preview or print.

_hPaintDC: Device Context for the print

_hRefDC: Device Context for references

_rcPaint: Rectangle in which the object should be drawn. The mapping mode
is in the normal drawing units, mm/10, inch/100 or inch/1000.

Return Value:

0

Hints:

In this callback no List & Label function may be called which will produce
output (LlPrint(), etc.)! Functions like LlPrintGetCurrentPage(),
LlPrintGetOption() or LlPrintEnableObject() are allowed.

See: Hints on the use of GDI-objects.

This function is called twice per page, once with _bPreDraw = TRUE, then
with _bPreDraw = FALSE.

Example:

case LL_CMND_PROJECT:

 pSCP = (PSCLLPROJECT)pSC->_lParam;

 if (pSCP->_bPreDraw)

 {

 FillRect(pSCL->_hPaintDC, pSCL->_rcPaint,

 GetStockObject(LTGRAY_BRUSH);

 }

 break;

LL_CMND_SAVEFILENAME

Task:

Notification that the user has saved the project in the Designer. The file name
is passed.

Parameters:

lParam points to the zero-terminated file name.

API Reference

288

Return Value (_lResult):

0

Example:

case LL_CMND_SAVEFILENAME:

 pszLastFilename = (LPCTSTR)lParam;

LL_CMND_SELECTMENU

Task:

Notification that a menu has been selected.

Activation:

Always activated.

Parameters:

lParam: Menu ID of the menu item (negative ID if called from a toolbar
button!).

Return Value (_lResult):

TRUE, if List & Label shall not try to execute the command associated with the
menu ID (usually if the menu item has been inserted by the application)
FALSE otherwise

Example:

case LL_CMND_SELECTMENU:

 if (lParam == IDM_MYMENU)

 {

 // execute custom code

 return (TRUE);

 }

 break;

LL_CMND_TABLEFIELD

Task:

Enables the programmer to modify the coloring of individual table fields.

Activation:

LlSetOption(hJob, LL_OPTION_TABLE_COLORING, LL_COLORING_PROGRAM)

In this way, the control of the coloring in tables is left to your program (the
corresponding settings in the table characteristic dialog of the Designer won't
appear).

or

LlSetOption(hJob, LL_OPTION_TABLE_COLORING,LL_COLORING_DONTCARE)

Callback Reference

289

With this command, List & Label lets your program draw the background first
of all, then it draws the background again (if allowed) with the field pattern
defined in the Designer. This allows a kind of cooperation between the
programmer and the user.

Parameters:

lParam points to an scllTableField structure:

_nSize: Size of structure, sizeof(scllTableField)

_nType: Type of field:

Value Meaning

LL_TABLE_FIELD_HEADER Field is in the header line

LL_TABLE_FIELD_BODY Field is in the data line

LL_TABLE_FIELD_GROUP Field is in group header line

LL_TABLE_-
FIELD_GROUPFOOTER

Field is in group footer line

LL_TABLE_FIELD_FILL Field is the filling area when the table has a
fixed size and there is some free space
below the last data line

LL_TABLE_FIELD_FOOTER Field is in the footer line

_hPaintDC: Device Context for the print and in the following callback
definitions

_hRefDC: Device Context for the references

_rcPaint: Rectangle in which the field is to be drawn. The mapping mode is in
the normal drawing units, mm/10, inch/100 or inch/1000.

_nLineDef: Number of line definition to be drawn.

_nIndex: Field index, 0-based (the first column has the index 0, the second 1,
etc.)

_rcSpacing: Cell distances

_pszContents: This parameter provides the (evaluated) content of the cell
currently being rendered, e.g. "Smith" for a column that contains a field
Person.Lastname. You can use this parameter to handle certain values
specifically.

Return Value:

0

Hints:

In this callback no List & Label functions may be called which will produce
output (LlPrint(), etc.)!

API Reference

290

If you select a GDI object in these DCs or make other changes, e.g. change
the mapping mode, you should reverse the changes before ending the
routine. Hint: the API functions SaveDC(), RestoreDC() can help considerably
for complex changes (the used functions are Windows API function).

Example:

case LL_CMND_TABLEFIELD:

 pSCF = (PSCLLTABLEFIELD)pSC->_lParam;

 if (pSCF->_nIndex == 1)

 {

 FillRect(pSCF->_hPaintDC, pSCF->_rcPaint,

 GetStockObject(LTGRAY_BRUSH);

 }

 pSC._lResult = 0;

 break;

LL_CMND_TABLELINE

Task:

Enables the programmer to modify the coloring of individual table lines, e.g. to
produce your own zebra mode (every other line).

Activation:

LlSetOption(hJob, LL_OPTION_TABLE_COLORING, LL_COLORING_PROGRAM)

In this way the control of the coloring in tables is left to your program (the
corresponding setting possibilities won't appear).

LlSetOption(hJob, LL_OPTION_TABLE_COLORING,LL_COLORING_DONTCARE)

With this command, List & Label lets your program draw the background first
of all, then it draws the background with the field background defined in the
Designer, when required again. This allows a kind of cooperation between the
programmer and the user.

Make sure to set the LL_CB_TABLELINE flag via
LL_OPTION_CALLBACKMASK in order to receive this notification.

Parameters:

lParam points to an scLlTableLine structure:

_nSize: Size of the structure, sizeof(scLlTableLine)

_nType: Type of field:

Value Meaning

LL_TABLE_LINE_HEADER Header line

LL_TABLE_LINE_BODY Data line

LL_TABLE_LINE_GROUP Group header

LL_TABLE_-
LINE_GROUPFOOTER

Group footer

Callback Reference

291

LL_TABLE_LINE_FILL Filling area when the table has a fixed size
and there is some free space below the last
data line

LL_TABLE_LINE_FOOTER Footer line

_hPaintDC: Device Context for the printout

_hRefDC: Device Context for references

_rcPaint: Rectangle in which the line is to be drawn. The mapping mode is in
the normal drawing units, mm/10, inch/100 or inch/1000.

_nPageLine: Line index. Marks the 0-based line number on this page.

_nLine: Line index. Marks the 0-based line number of the line in the whole
print.

_nLineDef: Number of line definition to be drawn.

_bZebra: TRUE, when the user chooses zebra mode in the Designer.

_rcSpacing: Cell distances

Return Value:

0

Hints:

In this callback no List & Label function may be called which will produce
output (LlPrint(), etc.)!

See: Hints on the use of GDI-objects

Example:

case LL_CMND_TABLELINE:

 pSCL = (PSCLLTABLELINE)pSC->_lParam;

 if ((pSCL->_nPageLine % 2) == 1)

 {

 FillRect(pSCL->_hPaintDC, pSCL->_rcPaint,

 GetStockObject(LTGRAY_BRUSH);

 }

 pscCallback->_lReply = 0;

 break;

LL_CMND_VARHELPTEXT

Task:

Assigns a context help string for a variable or field. This string is displayed if
the variable/field is selected in the expression wizard.

API Reference

292

Activation:

Always activated

Parameters:

lParam: points to a string containing the variable or fieldname

Return Value:

_lReply must point to the description string. Caution: this must remain valid
after return of this function, so do not use an automatic stack variable.

Example:

case LL_CMND_VARHELPTEXT:

 sVariableDescr = (LPCSTR) pscCallback->_lParam;

 // Check routines for variable

 strcpy(szHelpText, "Variable x for task y");

 pscCallback->_lReply = (LPARAM)szHelpText;

 break;

LL_INFO_METER

Task:

Notification that a (possibly) lengthy operation is taking place.

Activation:

Always activated

Parameters:

lParam points to a structure of type scLlMeterInfo:

_nSize: Size of the structure

_hWnd: Handle of the List & Label main window

_nTotal: Total count of objects

_nCurrent: Index of object currently being processed

_nJob: Job ID, tells you what LL is doing:

Value Meaning

LL_METERJOB_SAVE saving the objects

LL_METERJOB_LOAD loading the objects

LL_METERJOB_-
CONSISTENCYCHECK

internal consistency check

Callback Reference

293

Hints:

By using this callback, the host application can implement a wait dialog box.
We suggest using this callback if the object count exceeds 200 objects to
reduce unnecessary screen flickering. To get a percentage value, use
MulDiv(100, _nCurrent, _nTotal).

Example:

// functions used here for a meter dialog must be replaced by own

functions

case LL_INFO_METER:

{

 scLlMeterInfo* pMI = (scLlMeterInfo*)lParam;

 static HLLJOB hMeterJob = 0;

 // is actual version?

 if (pMI->_nSize == sizeof(scLlMeterInfo))

 {

 // do I have to do something?

 if (pMI->_nTotal > 0)

 {

 // get parent window handle for Dialog

 HWND hWndParent = pMI->_hWnd ? pMI->_hWnd : hwndMyFrame;

 // start:

 if (pMI->_nCurrent == 0)

 {

 // open meter bar with 0%!

 hMeterJob = WaitDlgStart(hWndParent, "wait a moment",

0);

 }

 else

 {

 // end:

 if (pMI->_nCurrent == pMI->_nTotal)

 {

 // end meter bar!

 WaitDlgEnd(hMeterJob);

 }

 else

 // somewhere in between 0 and 100

 {

 // set meter value to MulDiv(100, _nCurrent, _nTotal)

 WaitDlgSetText(hMeterJob, "still working...",

 MulDiv(100, pMI->_nCurrent, pMI->_nTotal));

 }

 }

 }

 }

}

break;

LL_INFO_PRINTJOBSUPERVISION

Task:

Can be used to monitor a print job after it is passed to the spooler.

API Reference

294

Parameter:

lParam contains an address of a struct of type scLlPrintJobInfo:

_nSize: Size of the structure

_hLlJob: Job handle of the job that started the print

_szDevice: Printer name

_dwJobID: Job ID (not the job ID of the printer but a global one created by
List & Label)

_dwState: Combination of state flags (JOB_STATUS_-constants in
WINSPOOL.H)

Hints:

Please make sure to set LL_OPTION_NOPRINTJOBSUPERVISION to FALSE to
enable this callback.

The detail depth depends on the print spooler. Please note that all machines
in the transmission chain (i.e. print server and client) need to run NT-based
operating systems (Windows NT4 and higher).

The dwState flags are defined as follows:

#define JOB_STATUS_PAUSED 0x00000001
#define JOB_STATUS_ERROR 0x00000002
#define JOB_STATUS_DELETING 0x00000004
#define JOB_STATUS_SPOOLING 0x00000008
#define JOB_STATUS_PRINTING 0x00000010
#define JOB_STATUS_OFFLINE 0x00000020
#define JOB_STATUS_PAPEROUT 0x00000040
#define JOB_STATUS_PRINTED 0x00000080
#define JOB_STATUS_DELETED 0x00000100
#define JOB_STATUS_BLOCKED_DEVQ 0x00000200
#define JOB_STATUS_USER_INTERVENTION 0x00000400
#define JOB_STATUS_RESTART 0x00000800

LL_NTFY_DESIGNERPRINTJOB

Task:

Via callback LL_NTFY_DESIGNERPRINTJOB List & Label informs you about the
task that has to be performed. This callback will always be called up in the
context of the designer thread (this is the thread, from which LlDefineLayout()
was called).

Parameters:

The callback parameter is a pointer to a scLlDesignerPrintJob structure:

Callback Reference

295

_nUserParam: value you set LL_OPTION_DESIGNERPREVIEWPARAMETER to
or assigned LL_OPTION_DESIGNEREXPORTPARAMETER to.

_pszProjectName: Name of the project to print. This parameter is only valid
with the command "START", otherwise NULL.

_pszOriginalProjectFileName: Name of the original project. This parameter is
only valid with the command "START", otherwise NULL. It is necessary, so that
relative paths and the function ProjectPath$() are correctly evaluated by List &
Label.

_nPages: Maximum number of pages to be output. This will have to be
passed after print start via

LlPrintSetOption(hJob,LL_PRNOPT_LASTPAGE,_nPages)

to the print job. If _nPages has the value "0", this means, that the print should
not be limited.

_nFunction: Operations to be performed. There are four different operations:
Start, Break, Finalize and Status query.

As there are two groups of operation (EXPORT and PREVIEW), this gives 8
constants:

LL_DESIGNERPRINTCALLBACK_PREVIEW_START
LL_DESIGNERPRINTCALLBACK_PREVIEW_ABORT
LL_DESIGNERPRINTCALLBACK_PREVIEW_FINALIZE
LL_DESIGNERPRINTCALLBACK_PREVIEW_QUEST_JOBSTATE
LL_DESIGNERPRINTCALLBACK_EXPORT_START
LL_DESIGNERPRINTCALLBACK_EXPORT_ABORT
LL_DESIGNERPRINTCALLBACK_EXPORT_FINALIZE
LL_DESIGNERPRINTCALLBACK_EXPORT_QUEST_JOBSTATE

_hWnd: Window handle. The meaning of this structure member is described
below.

_hEvent: Event handle, needed for communication and synchronization of
your application with List & Label.

_pszExportFormat: Preselected export format (required in Ribbon mode
only), see chapter "Direct Print and Export From the Designer".

_bWithoutDialog: Print/export without dialog (required in Ribbon mode only),
see chapter "Direct Print and Export From the Designer".

Return Value:

Return LL_DESIGNERPRINTTHREAD_STATE_RUNNING, if your thread is
working otherwise LL_DESIGNERPRINTTHREAD_STATE_STOPPED.

API Reference

296

Hints:

See chapter "Direct Print and Export From the Designer".

LL_NTFY_EXPRERROR

Task:

Notifies the application of an expression error found by the parser.

Activation:

Always active

Parameters:

lParam: Pointer to an error text

Return Value:

0

Hints:

As LlExprError() does not reliably return an incorrect formula after a call to
LlPrintStart(), this event can be used to collect errors and present them to the
user when LlPrintStart() fails because of formula errors.

LL_NTFY_FAILSFILTER

Task:

Notification that the data record which has just been passed to List & Label
was not printed, as it did not comply with the filter requirement.

Activation:

Always active

Parameters:

Meaning of the parameter lParam: none

Return Value:

0

Hints:

In this callback, no List & Label function may be called which will produce
output (LlPrint(), etc.)!

Serves to set a global variable; but can be made superfluous with LlPrintDid-
MatchFilter().

Callback Reference

297

Example:

case LL_NTFY_FAILSFILTER:

 bFails = TRUE;

 break;

LL_NTFY_VIEWERBTNCLICKED

Task:

Notification that a button has been pressed in the preview window.

Activation:

Always activated

Parameters:

lParam: Tool button ID

Return Value (_lResult):

_lResult Meaning

1 ignore button (action usually done by host
application)

0 execute default button function

Hints:

For the IDs please refer to the callback LL_CMND_GETVIEWERBUTTONSTATE.

Example:

 case LL_NTFY_VIEWERBTNCLICKED:

 switch (lParam)

 {

 case 112:

 // beep on one-page print

 // and don't execute it!

 MessageBeep(-1);

 return(1);

 }

 break;

LL_NTFY_VIEWERDRILLDOWN

Task:

Notification that a drilldown action should be processed.

Activation:

LlSetOption(hJob, LL_OPTION_DRILLDOWNPARAMETER,

 (LPARAM)&oMyDrillDownParameters);

API Reference

298

Parameters:

lParam points to a structure scLlDrillDownJob:

_nSize: Size of the structure

_nFunction: Sets the task:

Task Meaning

LL_DRILLDOWN_START Start

LL_DRILLDOWN_FINALIZE Finalize

_nUserParameter: Value passed with LL_OPTION_DRILLDOWNPARAMETER

_pszTableID: Points to a string containing the name of the child table

_pszRelationID: Points to a string containing the name of the relation
between child and parent table

_pszSubreportTableID: Points to a string containing the name of the child
table.

_pszKeyField: Points to a string containing the name of the key field of the
parent table. If the relation contains different key fields, the result is tab
delimited. Please note the description of the function
LlDbAddTableRelationEx().

_pszSubreportKeyField: Points to a string containing the name of the key
field of the child table. If the relation contains different key fields, the result is
tab delimited. Please note the description of the function
LlDbAddTableRelationEx().

_pszKeyValue: Points to a string containing the contents of the key field of
the parent table. If the relation contains different key fields, the result is tab
delimited. Please note the description of the function
LlDbAddTableRelationEx().

_pszProjectFileName: Name of the project file to be processed.

_pszPreviewFileName: Name of the preview file that has to be created.

_pszTooltipText: Points to a string containing the tool tip text when hovering
over a table entry, that can trigger a drilldown report.

_pszTabText: Points to a string containing the tab text, if the user wants a
drilldown report shown in a separate tab.

_hWnd: Window handle to show own dialogs (window handle of the preview
control).

Callback Reference

299

_nID: Unique drilldown job ID, should not be mistaken with the List & Label
print job. To make a unique assignement, in the FINALIZE task this ID contains
the value that has been assigned in the START task.

_hAttachInfo: This parameter is needed for LlAssociatePreviewControl() to
attach the viewer. Additionally the flags LL_ASSOCIATEPREVIEW-
CONTROLFLAG_DELETE_ON_CLOSE and LL_ASSOCIATEPREVIEW-
CONTROLFLAG_HANDLE_IS_ATTACHINFO must be used. Further infor-
mation can be found in chapter "Printing Relational Data".

Hints:

This callback will always be called in the context of the preview thread,
regardless if initiated from designer or preview print.

Example:

See chapter "Printing Relational Data".

LL_QUERY_DESIGNERACTIONSTATE

Task:

Via this callback List & Label checks the state of the user defined Actions (see
LlDesignerAddAction()). You can then, depending on requirements, enable or
disable the actions.

Activate:

Always active

Parameter:

HIWORD(lParam): the (user defined) ID for the action

LOWORD(lParam): Status setting as set by Designer

Return value (_lResult):

Value Meaning

1 Action is active

2 Action is not active

Example:

case LL_QUERY_DESIGNERACTIONSTATE:

 _lResult = (bEnabled? 1 : 2);

 break;

API Reference

300

LL_QUERY_EXPR2HOSTEXPRESSION

Task:

Via this callback List & Label asks the host to translate a filter expression (as
configured in the Designer) to data source native syntax. The callback is
triggered multiple times for each part of the filter expression as soon as the
application calls to LlPrintDbGetCurrentTableFilter(). This callback can be used
e.g. to translate a List & Label filter to an SQL query.

Activate:

Always active, triggered by a call to LlPrintDbGetCurrentTableFilter().

Parameter:

lParam points to a structure scLLEXPR2HOSTEXPR. For readability, the prefix
"_p" means that it's a pointer to the argument, but in the description, we call it
the argument.

_nSize: Size of the structure

_pszTableID: Table this expression belongs to.

_nType: Type of element that needs to be translated. For most operations,
simply set _pvRes to the resulting statement for the operation. If – for
example – _nType is LLEXPR2HOSTEXPR_ARG_BINARY_OPERATOR_ADD,
the typical return value would be _pvRes = _pv1 + _T("+") + _pv2.

Value Meaning

LLEXPR2HOSTEXPR_ARG_BOOLEA
N

a boolean value

LLEXPR2HOSTEXPR_ARG_TEXT a text value. If you need to
parametrize your query to avoid
SQL injection attacks, set the
_pvName member to a parameter
name (on entry, _pvName contains
a unique, consecutive integer
index that you can use for the
name if needed) and set _pvRes to
the resulting text. The parameter
values will be returned in the
corresponding variant passed to
LlPrintDbGetCurrentTableFilter().

LLEXPR2HOSTEXPR_ARG_NUMBE
R

a numeric value. _pvArg1->vt is
either VT_I4 for an integer, oder
VT_R8 for a floating point value.

LLEXPR2HOSTEXPR_ARG_DATE a date value

Callback Reference

301

LLEXPR2HOSTEXPR_ARG_UNARY_
OPERATOR_SIGN

the sign operator

LLEXPR2HOSTEXPR_ARG_UNARY_
OPERATOR_NEGATION

the negation operator

LLEXPR2HOSTEXPR_ARG_BINARY_
OPERATOR_ADD

the "+" operator

LLEXPR2HOSTEXPR_ARG_BINARY_
OPERATOR_SUBTRACT

the "-" operator

LLEXPR2HOSTEXPR_ARG_BINARY_
OPERATOR_MULTIPLY

the "*" operator

LLEXPR2HOSTEXPR_ARG_BINARY_
OPERATOR_DIVIDE

the "/" operator

LLEXPR2HOSTEXPR_ARG_BINARY_
OPERATOR_MODULO

the "%" operator

LLEXPR2HOSTEXPR_ARG_LOGICAL
_OPERATOR_XOR

the logical xor operator

LLEXPR2HOSTEXPR_ARG_LOGICAL
_OPERATOR _OR

the logical or operator

LLEXPR2HOSTEXPR_ARG_LOGICAL
_OPERATOR_AND

the logical and operator

LLEXPR2HOSTEXPR_ARG_RELATIO
N_EQUAL

the "=" operator

LLEXPR2HOSTEXPR_ARG_RELATIO
N_NOTEQUAL

the "<>" operator

LLEXPR2HOSTEXPR_ARG_RELATIO
N_LARGERTHAN

the ">" operator

LLEXPR2HOSTEXPR_ARG_RELATIO
N_LARGEREQUAL

the ">=" operator

LLEXPR2HOSTEXPR_ARG_RELATIO
N_SMALLERTHAN

the "<" operator

LLEXPR2HOSTEXPR_ARG_RELATIO
N_SMALLEREQUAL

the "<=" operator

LLEXPR2HOSTEXPR_ARG_FUNCTIO
N

a designer function. _pvName
contains the function name,
_pv1…_pv4 contain the function's
arguments.

LLEXPR2HOSTEXPR_ARG_FIELD a database field. Depending on the
target syntax, it might be
necessary to escape or frame an
identifier name.

API Reference

302

_pvRes: a VARIANT to receive the resulting expression. Set the pointer to
NULL or the VARIANT type to VT_EMPTY, if no suitable translation is available.
The whole (or in case of an AND operator, the current branch of the)
expression is not translated.

_nArgs: Number of arguments. This member is important for functions with
optional arguments.

_pvName: Name of function to translate. This member can also be set to
handle query parameters (see above).

_pv1: Depending on _nType (see above), the first argument of a function or
the left hand side of an operator.

_pv2: Depending on _nType (see above), the second argument of a function
or the right hand side of an operator.

_pv3: The third argument of a function.

_pv4: The fourth argument of a function.

Return value:

Value Meaning

0 Translation was not handled or cannot be handled. The
whole (or in case of an AND operator, the current branch of
the) expression is not translated.

1 Translation was handled exactly.

2 Translation was handled inexactly, the result will contain
more records than appropriate. In this case, List & Label
will run its own filtering in addition in order to filter the
exceeding records.

6.3 Managing Preview Files

6.3.1 Overview

The preview print contained in List & Label writes the preview data into a file. This file
can be archived for later use, sent to another user who can look at it or print it
without any loss of quality.

All data is stored in one file. Using the optional compression that you can switch on
using

LlSetOption(hJob, LL_OPTION_COMPRESSSTORAGE, 1)

Managing Preview Files

303

the file size can be reduced by up to 2/3. Compression slows down the print process
but is convenient, for example, if you wish to present data on the Internet for
download or preview using our OCX.

The file has the extension ".LL". We do not provide any information about its inner
structure, and we recommend that you do no rely on any details you may find out!
This is intentional, as we have our own API to access the data contained in it, so that
there is no advantage for you in seeing inside the file. We wish to be free to change
the format whenever necessary, without having conflicts with existing software.

6.3.2 The Preview API

You do not need to worry about the details of the preview files - the API functions
LlStgsysxxx() do that for you.

All of these functions are exported by the C?LS20.DLL. This DLL, which you will
usually distribute with external viewers, is as small as possible. If you wish to use
this DLL via an import library, you need to link to the C?LS20.LIB file. In some
programming languages, it is sufficient to include the respective declaration file.

LlStgsysAppend

Syntax:

INT LlStgsysAppend (HLLSTG hStg, HLLSTG hStgToAppend);

Task:

Append another preview job to the current storage file.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

hStgToAppend: Handle of the preview file to append.

Return value:

<0: Error code
 = 0: okay

Hints:

This function needs both (!) preview files to be in the LL_STG_STORAGE
format.

If the file to append contains a backside page it will only be used if the original
file doesn't already contain such a page itself.

Of course, the current storage format may not be opened with bReadOnly =
TRUE!

API Reference

304

Example:

HLLSTG hStgOrg;

HLLSTG hStgAppend;

hStgOrg = LlStgsysStorageOpen("c:\\test\\label1.ll", FALSE, FALSE);

hStgAppend = LlStgsysStorageOpen("c:\\test\\label2.ll", FALSE, TRUE);

LlStgsysAppend(hStgOrg, hStgAppend);

LlStgsysClose(hStgsysOrg);

LlStgsysClose(hStgsysAppend);

LlStgsysConvert

Syntax:

INT LlStgsysConvert (HLLSTG hStg, LPCTSTR pszDstFilename,

 LPCTSTR pszFormat);

Task:

Converts a preview file to another format.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

pszDstFilename: Name of the target file. It is also possible to use the place
marker %d (e.g. "page %d"). This is important e.g. for converting JPEGs,
because without the place marker only one page will result.

pszFormat: Target format. Valid values are:

"TIFF" (also "PICTURE_MULTITIFF")
"JPEG" (also "PICTURE_JPEG")
"PNG" (also "PICTURE_PNG")
"EMF"
"TTY"
"PDF"
"PRN"
"XPS"
"TXT"

This parameter allows you to declare a semicolon-separated list with further
export options. You will find the accepted values in the chapter "The Export
Modules". Please note that not all options can be supported with this API. An
example is the parameters "PDF;PDF.EncryptionFile=1".

Additional to the mentioned parameters above the following parameters can
be used:

Value Meaning

PageIndexRange Analog to the print options dialog a
range for pages can be set.

Managing Preview Files

305

Value Meaning

JobIndexRange Analog to the print options dialog a
range for the job can be set.

IssueIndexRange Analog to the print options dialog a
range for the issues can be set.

An example of this is the use of " PDF;Export.PageIndexRange=2-3".

With this, only pages 2 and 3 are converted to PDF.

Return value:

<0: Errorcode
 = 0: okay

Hints:

-

Example:

HLLSTG hStgOrg;

hStgOrg = LlStgsysStorageOpen("c:\\test\\label1.ll", "",

 FALSE, TRUE);

LlStgsysStorageConvert(hStgOrg, "c:\\test\\label2.pdf", "PDF");

LlStgsysStorageClose(hStgOrg);

See also:

LlStgsysStorageOpen, LlStgsysStorageConvert

LlStgsysDeleteFiles

Syntax:

void LlStgsysDeleteFiles (HLLSTG hStg);

Task:

Erases the preview file(s).

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

Return value:

<0: Error code
 = 0: okay

Hints:

This function erases the preview file(s). The only call that makes sense after
this call is LlStgsysStorageClose().

API Reference

306

See also:

LlStgsysStorageOpen, LlStgsysStorageClose

LlStgsysDestroyMetafile

Syntax:

INT LlStgsysDestroyMetafile (HANDLE hMF);

Task:

Releases the metafile handle.

Parameter:

hMF: (enhanced) metafile handle

Return value:

<0: Error code
= 0: okay

Example:

See LlStgsysGetPageMetafile

See also:

LlStgsysGetPageMetafile

LlStgsysDrawPage

Syntax:

void LlStgsysDrawPage (HLLSTG hStg, HDC hDC, HDC hPrnDC,

 BOOL bAskPrinter, _PCRECT pRC, INT nPageIndex, BOOL bFit,

 LPVOID pReserved);

Task:

Paints a preview page to a screen or printer device.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

hDC: DC for printing (usually a printer or screen device). Can be NULL (see
below).

hPrnDC: Reference DC which can be used to get the unprintable area etc. For
a screen DC, this is the (default) printer DC, for a printer DC it is the same as
hDC above. Can be NULL (See below).

bAskPrinter: If hPrnDC is NULL, this flag defines whether the user is asked
about the printer for the reference DC. If it is TRUE, he will be asked, if it is
FALSE, the default printer will be used.

Managing Preview Files

307

pRC: Points to a RECT structure containing the device coordinates for
printing. If this is NULL, the printer's values will be used. Must not be NULL
when printing to a non-printer DC!

nPageIndex: Page index (1..LlStgsysGetPageCount())

bFit: Defines whether the print should fit into the area (TRUE) or whether the
original size should be kept (FALSE), although the latter might result in clipped
output due to differences in paper size, unprintable area etc..

pReserved: NULL

Return value:

Error code

Hints:

If hDC is NULL, it will be set to hPrnDC after the reference DC has been
created.

See Also:

LlStgsysPrint, LlStgsysStoragePrint

LlStgsysGetAPIVersion

Syntax:

int LlStgsysGetAPIVersion (HLLSTG hStg);

Task:

Returns the version of the Stgsys API.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

Return value:

The version number of the Stgsys API in List & Label C?LL20.DLL and
C?LS20.DLL

Hints:

The current version is 20 (as of 10/2014)

This function should be used to test the API version. Newer APIs might have a
larger set of functions available, older ones less.

See also:

LlStgsysGetFileVersion

API Reference

308

LlStgsysGetFilename

Syntax:

int LlStgsysGetFilename (HLLSTG hStg, INT nJob, INT nFile,

 LPTSTR pszBuffer, UINT nBufSize);

Task:

Can be used to get the "real" name(s) of the preview file(s). If a path has been
provided to LlStgsysStorageOpen() this path will also be included.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nJob: Job Index: 1: first Job,... (1..LlStgsysGetJobCount())

nFile: Page number

Value Meaning

-1 Management file

0 Printer configuration file

>0 Page Metafile for this page (1.. LlStgsysGet-
PageCount())

lpszBuffer: Initialized buffer for the file name

nBufSize: Size of the buffer

Return value:

Error code

Hints:

The nFile Parameter distinguishes the type of file for which the name is to be
returned.

In the case of LL_STG_STORAGE, its name is returned regardless of the nFile
parameter, as this is the one and only file that contains all information.

Example:

CString sFilename, sOutput;

LlStgsysGetFilename(hStg, 1, -1, sFilename.GetBuffer(_MAX_PATH),

 _MAX_PATH);

sFilename.ReleaseBuffer();

sOutput = CString(_T("View of file ")) + sFilename;

See also:

LlStgsysGetJobCount

Managing Preview Files

309

LlStgsysGetFileVersion

Syntax:

int LlStgsysGetFileVersion (HLLSTG hStg);

Task:

Returns the version of the preview file.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

Return value:

The version number of the preview file and the type:

Value Meaning

Bits 0..7 Version number (currently 20, current as of
10/2014)

Hints:

This call is also very important for finding out about properties of the storage
file and for dealing with possible differences.

See also:

LlStgsysGetAPIVersion

LlStgsysGetJobCount

Syntax:

INT LlStgsysGetJobCount (HLLSTG hStg);

Task:

Returns the number of jobs stored in the preview.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

Return value:

>0: Number of jobs
<0: Error code

Example:

see LlStgsysSetJob

See also:

LlStgsysStorageOpen

API Reference

310

LlStgsysGetJobOptionStringEx

Syntax:

INT LlStgsysGetJobOptionStringEx (HLLSTG hStg, LPCTSTR pszKey,

 LPTSTR pszBuffer, UINT nBufSize);

Task:

Returns project parameter values.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

pszKey: Option name

pszBuffer: Address of buffer for the value

nBufSize: Size of buffer (incl. string termination)

Return value:

<0: Error code
= 0: okay

Hints:

The available option names depend on the parameters which the creating
application has made available via LlPrintSetProjectParameter() or
LlSetDefaultProjectParameter() as PUBLIC. Note that you need to prefix these
parameters with "ProjectParameter" in order to query the values. See also the
Project Parameters chapter.

See also:

LlStgsysSetJobOptionStringEx

LlStgsysGetJobOptionValue

Syntax:

INT LlStgsysGetJobOptionValue (HLLSTG hStg, INT nOption);

Task:

Returns certain numerical parameters for the current job.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nOption: Chooses the meaning of the return value

Return value:

>=0: Value
<0: Error code

Managing Preview Files

311

Hints:

These values are invaluable if you wish to create your own preview and print
management, especially if the destination printers are different from the
original.

To get the correct value, set the job with LlStgsysSetJob() before calling this
API function.

nOption can have the following values:

LS_OPTION_BOXTYPE

Returns the style of the meter box used at the time of the preview print (and
which should also be used during printing). This is one of the constants
LL_BOXTYPE_xxx (see LlPrintWithBoxStart()), or -1 if no box had been used
(LLPrintStart()).

LS_OPTION_UNITS

Returns the units chosen for the project, see LL_PRNOPT_UNIT.

LS_OPTION_PRINTERCOUNT

Number of printers used

See also:

LlStgsysSetJob

LlStgsysGetLastError

Syntax:

INT LlStgsysGetLastError (HLLSTG hStg);

Task:

Returns the error code of the last call to a LlStgsys()-API function.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

Return value:

<0: Error code
 = 0: no error

Hints:

Can be used for functions that return NULL as return value in case of an error
(i.e. LlStgsysGetPageMetafile()).

See also:

LlStgsysGetPageMetafile

API Reference

312

LlStgsysGetPageCount

Syntax:

INT LlStgsysGetPageCount (HLLSTG hStg);

Task:

Returns the number of pages in the current job.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

Return value:

>0: Number of pages
<0: Error code

Hints:

The page numbers (the numbers that can be written on the paper!) can be
queried by calling LlStgsysGetPageOptionValue() with the parameter
LS_OPTION_PAGENUMBER.

Example:

See LlStgsysSetJob

See also:

LlStgsysSetJob, LlStgsysJobGetOptionValue

LlStgsysGetPageMetafile

Syntax:

HANDLE LlStgsysGetPageMetafile (HLLSTG hStg, INT nPageIndex);

Task:

Returns an enhanced metafile handle that can be used to display or print page
data.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nPageIndex: Page index (1..LlStgsysGetPageCount())

Return value:

NULL: error; else: handle of (enhanced) metafile

Hints:

The handle needs to be released using LlStgsysDestroyMetafile().

Managing Preview Files

313

Example:

Excerpt from the code of LlStgsysDrawPage():

HANDLE hMF;

BOOL b16bit;

hMF = LlStgsysGetPageMetafile(hStg, nPageIndex);

if (hMF == NULL)

{

 hMF = LlStgsysGetPageMetafile16(hStg, nPageIndex);

}

if (hMF == NULL)

 ret = LL_ERR_STG_CANNOTGETMETAFILE;

else

{

 POINT ptPixels;

 POINT ptPixelsOffset;

 POINT ptPixelsPhysical;

 POINT ptPixelsPerInch;

 ptPixels.x = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELS_X);

 ptPixels.y = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELS_Y);

 ptPixelsOffset.x = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELSOFFSET_X);

 ptPixelsOffset.y = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELSOFFSET_Y);

 ptPixelsPhysical.x = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELSPHYSICAL_X);

 ptPixelsPhysical.y = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELSPHYSICAL_Y);

 ptPixelsPerInch.x = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELSPERINCH_X);

 ptPixelsPerInch.y = LlStgsysGetPageOptionValue(hStg, nPageIndex,

 LS_OPTION_PRN_PIXELSPERINCH_Y);

 <Paint Metafile>

 LlStgsysDestroyMetafile(hMF);

}

See also:

LlStgsysDestroyMetafile

LlStgsysGetPageOptionString

Syntax:

INT LlStgsysGetPageOptionString (HLLSTG hStg, INT nPageIndex,

 INT nOption, LPTSTR pszBuffer, UINT nBufSize);

Task:

Returns character strings that are stored in the preview file.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

API Reference

314

nPageIndex: Page index (1..LlStgsysGetPageCount())

nOption: Chooses the meaning of the return value

pszBuffer: Address of the buffer for the string

nBufSize: Length of the buffer (including the terminating 0-character)

Return value:

Error code

Hints:

You can use the following values for nOption:

LS_OPTION_PROJECTNAME

Returns the name of the project file that has been used to create this page

LS_OPTION_JOBNAME

Returns the name of the job (see LlPrintWithBoxStart())

LS_OPTION_USER

Returns the user-specific string (see LlStgsysSetPageOptionString())

LS_OPTION_CREATION

Creation date/time

LS_OPTION_CREATIONAPP

Application that created this file

LS_OPTION_CREATIONDLL

DLL that created this file

LS_OPTION_CREATIONUSER

User and computer name of the person that created this file

LS_OPTION_PRINTERALIASLIST

See also LL_OPTIONSTR_PRINTERALIASLIST: this represents the printer alias
list valid at the time of the creation of the preview file. This is one string, lines
separated by a line break "\n".

LS_OPTION_USED_PRTDEVICE

Returns the device of the original printer (for example "HP LaserJet 4L")

See also:

LlStgsysGetPageOptionValue, LlStgsysSetPageOptionString

Managing Preview Files

315

LlStgsysGetPageOptionValue

Syntax:

INT LlStgsysGetPageOptionValue (HLLSTG hStg, INT nPageIndex,

 INT nOption);

Task:

Returns page-dependent information.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nPageIndex: Page index (1..LlStgsysGetPageCount())

nOption: Chooses the meaning of the return value

LS_OPTION_PAGENUMBER

Returns the page number of the selected page.

LS_OPTION_COPIES

Returns the number of copies that the page should be printed with.

LS_OPTION_PRN_ORIENTATION

Returns the page orientation (DMORIENT_PORTRAIT or
DMORIENT_LANDSCAPE)

LS_OPTION_PHYSPAGE

Returns whether the project should be printed using the physical paper size
(1) or only the printable area (0).

LS_OPTION_PRN_PIXELSOFFSET_X

Returns the horizontal offset of the printable area in relation to the paper edge
(of the original printer).

LS_OPTION_PRN_PIXELSOFFSET_Y

Returns the vertical offset of the printable area in relation to the paper edge
(of the original printer).

LS_OPTION_PRN_PIXELS_X

Returns the horizontal size of the printable area (of the original printer).

LS_OPTION_PRN_PIXELS_Y

Returns the vertical size of the printable area (of the original printer).

API Reference

316

LS_OPTION_PRN_PIXELSPHYSICAL_X

Returns the horizontal size of the paper (of the original printer).

LS_OPTION_PRN_PIXELSPHYSICAL_Y

Returns the vertical size of the paper (of the original printer).

LS_OPTION_PRN_PIXELSPERINCH_X

Returns the horizontal printer resolution (DPI).

LS_OPTION_PRN_PIXELSPERINCH_Y

Returns the vertical printer resolution (DPI).

LS_OPTION_PRN_INDEX

Returns the index of the printer used for the current page (0 means first page-
printer, 1 for the printer for the other pages).

LS_OPTION_ISSUEINDEX

Returns the issue index (1…) of the page.

Return value:

>=0: Value
<0: Error code

Hints:

"Printer" or "original printer" means the printer selected when the preview file
was created.

These values are invaluable if you wish to create your own preview and print
management, especially if the destination printers are different from the
original.

To get the correct value, set the job with LlStgsysSetJob() before calling this
API function.

See also:

LlStgsysGetPageOptionString

LlStgsysGetPagePrinter

Syntax:

INT LlStgsysGetPagePrinter (HLLSTG hStg, INT nPageIndex,

 LPTSTR pszDeviceName, UINT nDeviceNameSize, PHGLOBAL phDevmode);

Task:

Returns the printer and the settings that would be used for this page.

Managing Preview Files

317

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nPageIndex: Page index (1..LlStgsysGetPageCount())

pszDeviceName: Pointer to a buffer for the device name

nDeviceNameSize: Size of the buffer

phDevmode: Pointer to a global handle where the DEVMODE structure will be
stored. If NULL, the DEVMODE structure is not queried. If a pointer to a
handle is passed, it must be a valid global handle or NULL.

Return value:

Error code (LL_ERR_BUFFERTOOSMALL if the device name's buffer is too
small)

See also:

LlGetPrinterFromPrinterFile, LlSetPrinterInPrinterFile

Example:

HGLOBAL dev(NULL);

TCHAR* pszPrinter = new TCHAR[1024];

int iRet = LlStgsysGetPagePrinter(m_hStgOrg, 1, pszPrinter, 1096,

&dev);

LPVOID pDevmode = GlobalLock(dev);

DEVMODE aDEVMODE = *((DEVMODE*)pDevmode);

…

// tidy-up

GlobalUnlock(dev);

GlobalFree(dev);

LlStgsysPrint

Syntax:

HLLSTG LlStgsysStoragePrint (HLLSTG hStg, LPCTSTR pszPrinterName1,

 LPCTSTR pszPrinterName2, INT nStartPageIndex, INT nEndPageIndex,

 INT nCopies, UINT nFlags, LPCTSTR pszMessage, HWND hWndParent);

Task:

Prints pages from an open preview file job

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

pszPrinterName1: Name of the printer to be used for the first page (can be
NULL, see below)

pszPrinterName2: Name of the printer to be used for the following pages
(can be NULL, see below)

API Reference

318

nStartPageIndex: Index of the first page to be printed

nEndPageIndex: Index of the last page to be printed

nCopies: Number of copies

nFlags: A combination of the following flags:

Flag Meaning

LS_PRINTFLAG_FIT Fits the print to the printable area of the
printer

LS_PRINTFLAG_-
STACKEDCOPIES

Print copies for each page, not the job
(111222333 instead of 123123123)

LS_PRINTFLAG_-
TRYPRINTERCOPIES

Try to make hardware copies if possible

LS_PRINTFLAG_METER Show a meter dialog

LS_PRINTFLAG_-
ABORTABLEMETER

Show a meter dialog which has a
"Cancel" button

LS_PRINTFLAG_SHOWDIALOG Shows a printer select dialog

LS_PRINTFLAG_FAX Required for output on fax printer

pszMessage: Will be shown in the title of the optional meter dialog and is
also used as document name for the print job. If NULL, the entry from the
preview file (parameter of LlPrintWithBoxStart()) is used.

hWndParent: Window handle to be used as parent for the meter dialog

Return Value:

Error code

Hints:

Use this API routine if you want an easy way to print a page range from the
current storage job. If a printer name is NULL, List & Label tries to get the
printer and its settings from the values stored in the preview file (i.e. the
printer settings selected during creation). If no printer with the specified
device name is present, the default printer is selected.

You need to set the job (LlStgsysSetJob()) before you call this function.

See Also:

LlStgsysPrint, LlStgsysSetJob

LlStgsysSetJob

Syntax:

INT LlStgsysSetJob (HLLSTG hStg, INT nJob);

Managing Preview Files

319

Task:

Sets the job index for the following API calls

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nJob: Job index (1..LlStgsysGetJobCount())

Return value:

Error code

Hints:

The following API calls that return job-dependent data will use this job index to
return the corresponding values.

Example:

// calculates the total amount of pages

int nPages = 0;

INT nJob;

for (nJob = 1; nJob<LlStgsysGetJobCount(hStg); ++ nJob)

{

 LlStgsysSetJob(hStg, nJob);

 nPages + = LlStgsysGetPageCount(hStg);

}

See also:

LlStgsysGetJobCount

LlStgsysSetJobOptionStringEx

Syntax:

INT LlStgsysSetJobOptionStringEx (HLLSTG hStg, LPCTSTR pszKey,

 LPCTSTR pszValue);

Task:

Sets project parameter values.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

pszKey: Option name

pszValue: Value

Return value:

<0: Error code
= 0: okay

API Reference

320

Hints:

Can be used to write values into the preview file (unless it was opened as
READ-ONLY). Do not use reserved option names starting with "LL.".

See also:

LlStgsysGetJobOptionStringEx

LlStgsysSetPageOptionString

Syntax:

INT LlStgsysSetPageOptionString (HLLSTG hStg, INT nPageIndex,

 INT nOption, LPCTSTR pszBuffer);

Task:

Set string values.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

nPageIndex: Page index (1..LlStgsysGetPageCount())

nOption: Chooses the meaning of the contents value

Value Meaning

LS_OPTION_JOBNAME New job name

LS_OPTION_USER A user-specific value
The user can insert a user-specific
string, for example a user name, print
date etc. into the storage file.

pszBuffer: Address of a 0-terminated string

Return value:

Error code

Hints:

Of course, the storage file may not be opened with bReadOnly = TRUE!

Example:

LlStgsysSetJob(hStg, 1);

LlStgsysSetPageOption(hStg, 1, LS_OPTION_USER, "Letters A-B");

See also:

LlStgsysGetPageOptionValue

Managing Preview Files

321

LlStgsysStorageClose

Syntax:

void LlStgsysStorageClose (HLLSTG hStg);

Task:

Closes the access handle to the preview.

Parameter:

hStg: The handle returned by LlStgsysStorageOpen()

See also:

LlStgsysStorageOpen

LlStgsysStorageConvert

Syntax:

INT LlStgsysStorageConvert (LPCTSTR pszStgFilename,

 LPCTSTR pszDstFilename, LPCTSTR pszFormat);

Task:

Converts a preview file to another format.

Parameter:

pszStgFilename: Name of the preview file

pszDstFilename: Name of the target file

pszFormat: Target format. For valid values and additional options, see
LlStgsysConvert().

Return value:

<0: Errorcode
 = 0: okay

Hints:

-

Example:

LlStgsysStorageConvert("c:\\test\\label2.ll", "c:\\test\\label2.pdf",

"PDF");

See also:

LlStgsysStorageOpen, LlStgsysConvert

API Reference

322

LlStgsysStorageOpen

Syntax:

HLLSTG LlStgsysStorageOpen (LPCTSTR lpszFilename,

 LPCTSTR pszTempPath, BOOL bReadOnly, BOOL bOneJobTranslation);

Task:

Opens a preview file

Parameter:

lpszFilename: The name of the project or preview (List & Label does not take
account of the extension, as it will always be set to .LL)

pszTempPath: A temporary path (can be NULL or empty)

bReadOnly: TRUE: The file will be opened in read-only mode. FALSE: The file
can be written to

bJobTranslation: TRUE: The Stgsys API takes account of multiple jobs and
shows you all data as one job. FALSE: You can (and must!) manage multiple
jobs yourself

Return value:

Job handle for all other LlStgsys functions, 0 means error

Hints:

If you use a path for temporary data, this will be used as directory for the
preview files, otherwise the path of the project file name will be used. This
convention is compatible with the calls to LlPrint(<Project file>) and
LlPreviewSetTempPath(<Temporary Path>).

Note that the functions LlStgsysAppend() and LlStgsysSetPageOptionString()
need the file to be opened with bReadOnly = FALSE!

bJobTranslation = TRUE is convenient if you don't want to take account of
multiple jobs. If you want to show your users whether the file contains
multiple jobs, you need to set this to FALSE and manage a list of jobs with
their properties.

See also:

LlStgsysClose

LlStgsysStoragePrint

Syntax:

INT LlStgsysStoragePrint (LPCTSTR lpszFilename,

 LPCTSTR pszTempPath, LPCTSTR pszPrinterName1,

 LPCTSTR pszPrinterName2, INT nStartPageIndex,

Managing Preview Files

323

 INT nEndPageIndex, INT nCopies, UINT nFlags,

 LPCTSTR pszMessage, HWND hWndParent);

Task:

Prints pages from an open preview file job

Parameter:

lpszFilename: The name of the project or preview (List & Label does not take
account of the extension, as it will always be set to .LL)

pszTempPath: A temporary path (can be NULL or empty)

pszPrinterName1: Name of the printer to be used for the first page (can be
NULL, see below)

pszPrinterName2: Name of the printer to be used for the following pages
(can be NULL, see below)

nStartPageIndex: Index of the first page to be printed

nEndPageIndex: Index of the last page to be printed

nCopies: Number of copies

nFlags: A combination of the following flags:

Flag Meaning

LS_PRINTFLAG_FIT Fits the print to the printable area of the
printer

LS_PRINTFLAG_-
STACKEDCOPIES

Prints copies for each page, not the job
(111222333 instead of 123123123)

LS_PRINTFLAG_-
TRYPRINTERCOPIES

Tries to make copies by printer feature,
if possible

LS_PRINTFLAG_METER Shows a meter dialog

LS_PRINTFLAG_-
ABORTABLEMETER

Shows a meter dialog which has a
"Cancel" button

LS_PRINTFLAG_SHOWDIALOG Shows a printer select dialog

LS_PRINTFLAG_FAX Required for output on fax printer

pszMessage: Will be shown in the title of the optional meter dialog and is
also used as document name for the print job. If NULL, the entry from the
preview file (parameter of LlPrintStart()) is used.

hWndParent: Window handle to be used as parent for the meter dialog

Return value:

Error code

API Reference

324

Hints:

Use this API routine if you want an easy way to print a page range from a
preview file. If a printer name is NULL, List & Label tries to get the printer and
its settings from the values stored in the preview file (i.e. the printer settings
selected during creation). If no printer with the given device name is present,
the default printer is selected.

See also:

LlStgsysPrint

LsMailConfigurationDialog

Syntax:

INT LsMailConfigurationDialog (HWND hWndParent, LPCTSTR pszSubkey,

 UINT nFlags, INT nLanguage);

Task:

Opens a configuration dialog for the mail parameters. Can be used if the
CMMX20.DLL is used for sending export results by mail.

The settings will be saved in the registry under "HKEY_CURRENT_USER-
\software\combit\cmbtmx\<pszSubkey>\<User|Computer>".

Parameter:

hWndParent: Parent window handle for the dialog.

pszSubkey: Subkey that is used for saving the values in the registry. You
should use your application's executable name (excluding the path and file
extension) here. The values will then be set automatically.

nFlags: One or a combination of the following flags:

Value Meaning

LS_MAILCONFIG_USER User-specific data

LS_MAILCONFIG_GLOBAL Computer-specific data

LS_MAILCONFIG_PROVIDE
R

Provider selection (SMAPI, SMTP, ...)

All data (also the computer specific data) is saved user-specifically – the flags
just define a logical separation for the dialog (server settings and user
information).

nLanguage: Language for the dialog

Value Meaning

CMBTLANG_DEFAULT System language

CMBTLANG_GERMAN German

Managing Preview Files

325

Value Meaning

CMBTLANG_ENGLISH English

Other values can be found in the declaration files.

Return value:

Error code

See also:

-

LsMailGetOptionString

Syntax:

INT LsMailGetOptionString (HLSMAILJOB hJob, LPCTSTR pszKey,

 LPTSTR pszBuffer, UINT nBufSize);

Task:

Queries the email settings from List & Label.

Parameter:

hJob: List & Label email-API job handle

pszKey: Option name. For valid options, see LsMailSetOptionString().

lpszBuffer: Pointer to a buffer for the value.

nBufSize: Size of the buffer.

Return value:

Error code

See also:

LsMailSetOptionString

LsMailJobClose

Syntax:

INT LsMailJobClose (HLSMAILJOB hJob);

Task:

Close the DLL job.

Parameter:

hJob: List & Label email API job handle

API Reference

326

Hints:

This function must be called after using the email functions or when
terminating your application. (paired with LsMailJobOpen().

Example:

HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen(CMBTLANG_DEFAULT);

...

LsMailJobClose(hMailJob)

See also:

LsMailJobOpen

LsMailJobOpen

Syntax:

INT LsMailJobOpen (INT nLanguage);

Task:

Opens a mail job.

Parameter:

nLanguage: language for user interaction

Value Meaning

CMBTLANG_DEFAULT System default language

CMBTLANG_GERMAN German

CMBTLANG_ENGLISH English

Further constants in the declaration files.

Return value:

A handle, which is necessary for most functions.

A valid value is greater than 0.

Example:

HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen(0);

See also:

LsMailJobClose

Managing Preview Files

327

LsMailSendFile

Syntax:

INT LsMailSendFile (HLSMAILJOB hJob, HWND hWndParent);

Task:

Sends an email with the current settings.

Parameter:

hJob: List & Label email API job handle

hWndParent: Parent window handle for the email dialog. If the window
handle is "0", no dialog will be shown and the email will be sent without any
user activities.

Return value:

Error code

Example:

HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen(0);

LsMailSetOptionString(hMailJob, "Export.Mail.To",

"test@domainname.de");

LsMailSetOptionString(hMailJob, "Export.Mail.Subject", "Test!");

LsMailSetOptionString(hMailJob, "Export.Mail.AttachmentList",

 "c:\\test.txt");

LsMailSendFile(hMailJob, 0);

LsMailJobClose(hMailJob)

See also:

LsMailSetOptionString

LsMailSetOptionString

Syntax:

INT LsMailSetOptionString (HLSMAILJOB hJob, LPCTSTR pszKey,

 LPCTSTR pszValue);

Task:

Sets various mail settings in List & Label.

Parameter:

hJob: List & Label email API job handle

pszKey: The following values are possible:

Value Meaning

Export.Mail.To Recipient address. Multiple recipients can be
separated by semicolons.

API Reference

328

Value Meaning

Export.Mail.CC This address will receive a carbon copy. Multiple
recipients can be separated by semicolons.

Export.Mail.BCC This address will receive a blind carbon copy.
Multiple recipients can be separated by
semicolons.

Export.Mail.Subject Email subject.

Export.Mail.Body Mail body text.

Export.Mail.Body:text/html Mail body text (HTML).

Export.Mail.AttachmentList Tabulator-separated attachment list

pszValue: new value

Return value:

Error code

Example:

HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen(0);

LsMailSetOptionString(hMailJob, "Export.Mail.To",

 "test@domainname.com");

...

LsMailJobClose(hMailJob)

See also:

LsMailGetOptionString

LsSetDebug

Syntax:

void LsSetDebug (BOOL bOn);

Task:

Switches the LS-API debug mode.

Parameter:

bOn: If TRUE, the debug mode will be switched on.

Return value:

-

See also:

-

Overview

329

7. The Export Modules

7.1 Overview
In addition to the output to preview file, List & Label offers some other output
formats. These output formats can be created by certain special export modules
used by List & Label, with the file extension .LLX (= List & Label extension). This List
& Label extension interface is designed to allow multiple output formats in a single
extension file. The standard output formats provided with List & Label are DOCX,
HTML, MHTML, JQM, PDF, PICTURE_BMP, PICTURE_EMF, PICTURE_JPEG,
PICTURE_PNG, PICTURE_MULTITIFF, PICTURE_TIFF, PPTX, PRES, RTF, SVG, TTY,
TXT, TXT_LAYOUT, XLS, XHTML, XML and XPS.

The export output formats ("DOCX", "HTML", "MHTML", "JQM", "PDF",
"PICTURE_BMP", "PICTURE_EMF", "PICTURE_JPEG", "PICTURE_PNG",
"PICTURE_MULTITIFF", "PICTURE_TIFF", "PPTX", "PRES", "RTF", "SVG", "TTY", "TXT",
"TXT_LAYOUT", "XLS", "XHTML", "XML", "XPS") can be used in addition to the standard
output formats media printer ("PRN"), preview ("PRV") and file ("FILE"). The actual
export to one of the new formats can be performed analogously to normal printing.

The output formats which are shown to the end user or which are directly used can
be specified by your program.

7.2 Programming Interface

7.2.1 Global (De)activation of the Export Modules

List & Label tries to load the export extension module cmll20ex.llx from the main
DLLs path by default. All export formats are thus automatically available when
passing LL_PRINT_EXPORT as target to LlPrint(WithBox)Start.

If you want to deactivate the export modules, use LL_OPTIONSTR_LLXPATHLIST and
pass the file name preceded by a ^, i.e. "^cmll20ex.llx". The same option may be
used to load the module from a different path.

If you want to load the export modules from a different directory, you should also use
this option. For example, you can use "c:\programs\<your application>\cmll20ex.llx,
to load the export modules from your application directory.

7.2.2 Switching Specific Export Modules On/Off

Using the option LL_OPTIONSTR_EXPORTS_AVAILABLE, you can get a string
containing all available export media separated by semicolons. This list also contains
the standard output formats "PRN", "PRV" and "FILE". The available export formats can
be restricted by setting the option LL_OPTIONSTR_EXPORTS_ALLOWED. This setting
affects the available output formats in the dialog LlPrintOptionsDialog(). Please note

The Export Modules

330

that the print destination parameter in LlPrint[WithBox]Start() influences the export
media as well. You should therefore use LL_OPTIONSTR_EXPORTS_ALLOWED after
it.

Example of how to enable certain exporters:

LlPrintWithBoxStart(..., LL_PRINT_EXPORT, ...);
//Only print to preview and HTML is allowed:
LlSetOptionString(hJob, LL_OPTIONSTR_EXPORTS_ALLOWED,"PRV;HTML");
//...
LlPrintOptionsDialog(...);

Example of how to disable the export modules:

LlPrintWithBoxStart(..., LL_PRINT_EXPORT, ...);
//Prohibits all export modules:
LlSetOptionString(hJob, LL_OPTIONSTR_EXPORTS_ALLOWED, "PRN;PRV;FILE");
//...
LlPrintOptionsDialog(...);

7.2.3 Selecting/Querying the Output Format

The output format can be selected/queried with a parameter for the methods
LlPrint[WithBox]Start(). The following list shows the different values for this
parameter:

Value Meaning

LL_PRINT_NORMAL "Printer" output format will be default.

LL_PRINT_PREVIEW "Preview" output format will be default.

LL_PRINT_FILE "File" output format will be default.

LL_PRINT_EXPORT An export module will be set as default output format.
After this you could use the method LlPrintSetOption-
String(LL_PRNOPTSTR_EXPORT) to specify the export
module exactly.

You can also use LlPrintSetOptionString(LL_PRNOPTSTR_EXPORT) to specify a certain
output format, which will also be the default output format in LlPrintOptionsDialog().

Example in C++ of how to set the output format to RTF:

...
LlPrintWithBoxStart(..., LL_PRINT_EXPORT, ...);
LlPrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, "RTF");
LlPrintOptionsDialog(...);

If you wish to prohibit the end user from selecting the output format, you could use
the option LL_OPTIONSTR_EXPORTS_ALLOWED to disable the other formats. Simply
specify the output format you wish to force with this option.

Programming Interface

331

The end user can specify the default output format in the Designer using Project >
Page Setup. The selected export module will be set by List & Label using the option
LL_PRNOPTSTR_EXPORT. Your application should take account of this fact by
determining the default output format directly or disabling this configuration
opportunity in the Designer. Otherwise your end user could be confused when he
selects e.g. "RTF" in the Designer, but then finds "HTML" as a default format for
printing.

Example of how to take account of a selected export medium (if no selection has
been set by the end user in the Designer, "Preview" will be set as default):

LlPrintGetOptionString(hJob, LL_PRNOPTSTR_EXPORT, sMedia.GetBuffer(256),
256);
sMedia.ReleaseBuffer();
if (sMedia == "") //no default setting
{
 LlPrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, TEXT("PRV"));
}
LlPrintOptionsDialog(...);

Example of how to disable the configuration option in the Designer:

LlSetOption(hJob, LL_OPTION_SUPPORTS_PRNOPTSTR_EXPORT, FALSE);
//...
LlDefineLayout(...);

Use this option to determine which output format was selected by the end user in
the LlPrintOptionsDialog().

Example showing how to query the output format:

//...
LlPrintOptionsDialog(...);
LlPrintGetOptionString(hJob, LL_PRNOPTSTR_EXPORT, sMedia.GetBuffer(256),
256);
sMedia.ReleaseBuffer();
//...
if (sMedia == "PRV")
{
 LlPreviewDisplay(...);
 LlPreviewDeleteFiles(...); //optional
}

7.2.4 Setting Export-specific Options

The export-specific options can be set using LlXSetParameter() and queried with
LlXGetParameter(). These options are export media-specific, therefore the name of
the format must be specified for each function call. Options which are supported by
all export modules can be switched simultaneously for all exporters by passing an

The Export Modules

332

empty string as exporter name, ex. "Export.ShowResult". The options supported by
the export media will be listed in the following chapters.

Some of the options can be modified in the property dialog of the exporter by the
end user. These options will then be saved in the P-file by List & Label.

When using the export format "PRV" an export to a preview file can be done. Please
note that in for this format only the options Export.File, Export.Path, Export.Quiet and
Export.ShowResult are supported.

7.2.5 Export Without User Interaction

Export without user interaction can be performed very easily using the methods
already mentioned.

Example:

If you wish to export HTML without user interaction using the file 'Article.lst' and
'c:\temp' as the destination directory, you should use following code:

//...
LlXSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
 "Export.File", "export.htm");
LlXSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
 "Export.Path", "c:\\temp\\");
LlXSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
 "Export.Quiet","1");
LlPrintWithBoxStart(hJob, LL_PROJECT_LIST, "Article.lst",
 LL_PRINT_EXPORT, LL_BOXTYPE_BRIDGEMETER, hWnd,
 "Exporting to HTML");
LlPrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, "HTML");
//... normal printing loop ...

That's all! The meaning of the export-specific options can be found in the following
chapters.

7.2.6 Querying the Export Results

To find out which files have been created as an export result, you can use the option
LL_OPTIONSTR_EXPORTFILELIST. If you query this option using LlGetOptionString()
after LlPrintEnd(), the result will be a semicolon-separated list of all files (including
path) generated by List & Label. In the case of an HTML export, the result would be a
list of all HTML and JPEG files and in the case of a print to preview, the result would
be a single LL preview file.

The files created by the export will not be deleted automatically and should be
deleted by your application.

Programming Reference

333

7.3 Programming Reference

7.3.1 Excel Export

Overview

The Excel export module creates Microsoft Excel® documents. The creation is
independent of any installed version of this product, i.e. the export is native.
Depending on your needs, the full layout can be conserved during export, or only the
data from table objects is exported unformatted.

Limitations

The following limitations should be considered:

 Excel renders texts with an increased height compared to the standard output.
Thus all fonts are scaled down by an optional factor. You may set this factor
using the XLS.FontScalingPercentage option.

 Excel does not accept any objects on the non-printable area of your printer. This
results in a wider printout compared to List & Label. This effect can be minimized
by setting a zoom for the printout (see XLS.PrintingZoom option).

 RTF texts are embedded as pictures. As this increases the file size remarkably,
we recommend that you use normal text wherever possible.

 Tabs will be replaced by blanks.

 The option 'Separators fixed' in the table object is not supported.

 The option 'Fixed size' in the table object is not supported.

 Fill patterns available in List & Label cannot be transformed to XLS. All fillings are
solid.

 Chart and HTML objects are exported as pictures and thus cannot appear
transparently.

 The print order of lines and rectangles is disregarded, lines and rectangle frames
always appear in the foreground.

 The print order of texts and rectangles is disregarded, text always appears in the
foreground.

 Texts partially overlapping filled rectangles are filled completely.

 Overlapping text and picture objects are ignored.

 Lines that are neither horizontal nor vertical are ignored.

 Picture objects are rendered with a white frame.

 Large filled areas in projects with many different object coordinate values can
decrease the speed remarkably.

 Line widths are ignored.

 Rotated RTF objects and pictures are not supported.

The Export Modules

334

 Objects exported as pictures should fit into their rectangle, important for e.g.
barcodes.

 If the coordinates of two objects are only slightly different (i.e. a fraction of a
millimeter), frame lines might become invisible as Excel is not capable of
displaying them correctly.

 Gradient fills are not supported.

 Rotated text (180°) is not supported.

 Custom drawings in callbacks are not supported.

 Paragraph spacing is not supported.

 Negative values for spacing are not supported.

 The maximum number of Excel columns is limited to 256.

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the XLS export module in this
chapter. The options can be modified using the methods LlXSetParameter(..."XLS"...)
and read by calling LlXGetParameter(..."XLS"...).

Resolution: Defines the resolution in dpi for the generation of pictures. Default: 300
dpi.

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths.

Value Meaning

1 Black & White

24 24bit True Color

Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as rectangle

2 Object as picture

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Programming Reference

335

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as line

2 Object as picture

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object

2 Object as picture

Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As unformatted text

2 Object as picture

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

The Export Modules

336

1 As a complete table object

Default 1

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

XLS.FontScalingPercentage: Scaling factor for the font sizes. Necessary in order to
compensate for the increased text height in Excel. Default: 89

XLS.PrintingZoom: Scaling factor for the printout of the project. Necessary in order
to compensate for the inability to place any objects in the non-printable area. Default:
88(=88% zoom)

XLS.IgnoreGroupLines: Allows group header and footer lines to be ignored in the
resulting Excel file. Only effective if Export.OnlyTabledata has been set (see below).

Value Meaning

0 Group lines are exported

1 Group lines are ignored

Default 1

XLS.IgnoreHeaderFooterLines: Allows header and footer lines to be ignored in the
resulting Excel file. Only effective if Export.OnlyTabledata has been set (see below).

Value Meaning

0 Header and footer lines are exported

1 Header and footer lines are ignored

2 Header and footer lines are exported once on the first page. To
export the footer lines only on the last page, set the appearance
condition to LastPage().

Default 1

XLS.IgnoreLinewrapForDataOnlyExport: Allows line wraps to be ignored. Only
effective if Export.OnlyTabledata has been set (see below).

Value Meaning

0 Line wraps are exported to Excel

1 Line wraps are ignored

Default 1

Programming Reference

337

XLS.ConvertNumeric: Allows switching of the automatic conversion of numeric
values in the created Excel sheet.

Value Meaning

0 No automatic conversion

1 Numeric values are formatted according to the setting in the
Designer (Project > Options)

2 Only columns which actually contain a numeric value (e.g. a price)
will be converted. If a numeric column is explicitly formatted in
List & Label (e.g. Str$(price,0,0)), then it will not be converted.

3 List & Label tries to transform the output formatting configured in
the Designer to Excel as exact as possible. If the "Format" property
in the designer is not used, the content will be passed as Text to
Excel.

Default 3

XLS.AllPagesOneSheet: Enables the creation of a separate XLS worksheet for each
page.

Value Meaning

0 Create separate worksheet for each page

1 All pages are added to the same worksheet

Default 1

XLS.WorksheetName: Configures the name of the worksheet(s). You can use the
format identifier "%d" in the name. It will be replaced by the page number at runtime
(ex. "Report page %d").

XLS.FileFormat: Configures the file format.

Value Meaning

0 Format is recognized automatically by the file extension

1 Office XML(XLSX) format will be used

2 Excel (XLS) format will be used

Default 0

Export.Path: Path where the exported files should be saved. If this option is empty,
a file selection dialog will always be displayed.

Export.File: File name of the document.

The Export Modules

338

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

Export.OnlyTableData: Only data from table lines will be exported.

Value Meaning

0 All objects are exported.

1 Only table cells and their data are exported. The font properties
"Bold", "Italic" and the horizontal alignment of the text is used in
the result file. Other format options are ignored to ensure best
reusability of the result in Excel.

Default 0

7.3.2 HTML Export

The HTML export module creates HTML 4.01 code (with some limitations).

Overview

The export module collects all List & Label objects for the page currently being
printed and places them in a large HTML table (the layout grid) corresponding to their
physical position on the page. The sizes of the columns and rows in this table are a
result of the X and Y coordinates of all objects.

Programming Reference

339

The end user can choose an option from the HTML export settings to determine
whether the column widths of the layout grid should be values expressed as
percentage (based on the current window size of the browser) or absolute values (in
pixels). The advantage of absolute positions is that the result of the export is a more
precise representation of the original layout (in the Designer). Representation with
percentage positions has the advantage that it is normally more easily printable than
the other representations. This is due to the fact that the browsers can resize this
kind of representation.

Because each different X and Y coordinate results in another column or row in the
layout grid, you should pay attention to the design of your layout. Objects should
generally be aligned with the same edges. This results in a less complex layout grid,
which can be loaded more quickly by the browser.

The HTML 4.01 standard does not support overlapping objects. When you have
objects which overlap in the original layout, only the object with the lowest order (the
object printed first) will be exported. The other overlapping objects will be ignored.
Exception: colored rectangle objects in the background. This effect is achieved by
filling the cell (in the layout grid) of the next object over the rectangle.

Limitations

There are also other limitations set by the target format. The most important are
listed now.

 Rows that are anchored to each other are not correctly exported.

 Overlapping objects (except rectangles) are not supported.

 Rectangles cannot have any frames. Transparent rectangles will be ignored.

 Decimal tabs will be transformed to right-aligned tabs.

 Any other tabs will be transformed to a blank.

 'Paragraph spacing' and 'Line distance' in text objects are not supported.

 The option 'Line break' in text objects and table columns is always active in the
export result.

 The option 'Separators fixed' in table objects is not supported.

 The left offset in the first column of a table line will be ignored.

 The list object option "fixed size" is not supported.

 The chart object is exported as a picture and thus cannot appear transparently.

 The transformation of RTF text to HTML code is carried out by an RTF parser.
This parser interprets the basic RTF formatting. Extended RTF functionality such
as embedded objects will be ignored.

 Rotated RTF text is not supported.

 Spacing before table lines is not supported.

 Horizontal and vertical lines are exported as images, all other lines are ignored.

The Export Modules

340

 Gradient fills are not supported.

 Rotated text (RTF and plain) is not supported.

 Custom drawings in callbacks are not supported.

 Objects to be exported as picture should not overlap the object frame.

 Table frames of neighboring cells are not drawn so that they overlap each other,
but discretely. This can double the frame width and needs to be taken into
account during the design.

 Offset of table lines is not supported.

 TotalPages$() may not be used in rotated text objects.

The following tags or attributes superseding HTML 4.01 standard will be used:

 Ending the page frame for HTML pages will use browser specific tags to achive
best results for Netscape and Internet Explorer: "<body TOPMARGIN=0
LEFTMARGIN=0" for Internet Explorer 2 or later and "<body MARGINHEIGHT=0
MARGINWIDTH=0" for Netscape 3 or later.

 Setting line color for the table grid (<table BORDERCOLOR="#ff0000">) is
specific for Internet Explorer 3 or later.

 Setting line color for horizontal table lines (<hr COLOR="#ff0000">) is specific
for Internet Explorer 3 or later.

If the HTML object is not exported as picture but as HTML text, the part of the
stream between the <body> and </body> tags will be embedded. This by
definition leads to the following limitations:

 Cascading Style Sheets are not completely supported.

 Page formatting such as background color, margins etc. is lost.

 HTML does not allow scaling. The exported result may thus differ from the
layout in the Designer, especially when the HTML object contains the contents
of a whole web site.

 Even if the HTML object wraps over several pages, it will be exported in one
stream, i.e. no page wrap will occur.

 Embedded scripting functionalities may be lost.

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the HTML export module in this
chapter. These options can be modified/read using the methods
LlXSetParameter(..."HTML"...) and LlXGetParameter(..."HTML"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi screen resolution.

Programming Reference

341

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0..100, with 100
representing the highest quality (least compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths.

Value Meaning

1 Black & White

24 24bit True Color

Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG (and also as a complete rectangle for objects with
colored background).

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Line: Configures how line objects should be exported.

The Export Modules

342

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object

2 Object as JPEG

Default 1

Verbosity.Text.Frames: Configures how text object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)

1 Complete frame as box

Default 0

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text (parsed and converted to HTML)

2 As unformatted text (uses the default font specified in the project
file)

3 Object as JPEG

Default 1

Verbosity.RTF.Frames: Configures how RTF object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)

1 Complete frame as box

Default 0

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object

Programming Reference

343

Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.Table.Frames: Configures how table frames should be exported.

Value Meaning

0 Ignore table frame

1 Only horizontal lines of table frames

2 The whole table line including all frames

3 Cell-specific frames (uses CSS)

Default 3

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.LLXObject.HTMLObj: Configures how the HTML object should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

2 Object as embedded HTML. Only the HTML text between the
<BODY> and </BODY> tags will be exported. Please note the
hint on exporting limitations.

Default 2

HTML.Title: Specifies the title of the generated HTML document. Default: Title used
with LlPrintWithBoxStart().

Layouter.Percentaged: This option configures whether the layout should be defined
in absolute values or with values expressed as percentage.

The Export Modules

344

Value Meaning

0 Layout of the X coordinates in absolute values (pixel)

1 Layout of the X coordinates with values expressed as percentage

Default 0

Layouter.FixedPageHeight: Configures whether all pages should be forced to have
the same page height.

Value Meaning

0 Layout can shrink on the last page (e.g. if no objects have been
placed in the page footer)

1 The page height is set as configured

Default 1

Export.Path: Path where the exported files should be saved. If this option is empty,
a file selection dialog will always be displayed.

Export.File: File name of the first HTML page. Default: "index.htm". You may also
use printf format strings like "%d" in the file name (ex. "Export Page %d.htm"). In this
case, the files for the pages will be named by replacing the placeholder with the
correctly formatted page number. Otherwise, you will get a simple page numbering
for the result files.

Export.AllInOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single HTML file.

1 The result is a single HTML file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Programming Reference

345

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

HTML.Form.Header: Defines a certain HTML form tag such as "<form
method="POST" action=...". If this option has been specified, all object names are
analyzed with regard to special tags used for the form extension (see chapter 'HTML
form creation'). Default: Empty, no form creation

HTML.Form.Footer: This option defines a certain HTML form tag indicating the end
of the form. Default: "</form>"

Hyperlinks

Hyperlinks can be embedded in text, table and RTF objects directly in the Designer
using the Hyperlink$() function. Dynamic hyperlinks and formulas can be realized in
this way.

Another way of creating hyperlinks is via the object name. The names of text and
picture objects are parsed for the string "/LINK:<url>". Whenever this string is found,
a hyperlink is generated. Thus, if you name your picture object "combit
/LINK:http://www.combit.net", this would create a picture hyperlink during export to
HTML.

HTML Form Creation

The HTML module supports a special mode for creating HTML forms. The module
converts objects with certain names to input controls. This mode can be activated
using the option HTML.Form.Header.

Example:

LlXSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
 "HTML.Form.Header",
 "<form method="POST" action=http://www.xyz.de/x.cgi>");

The specified HTML code will also be exported, and all object names will then be
investigated for the following values:

The Export Modules

346

Text Objects

Value Meaning

@EDIT:<Value> Creates a single line edit control with
<Value> as control name in the form. The
contents of the first paragraph of the object
will be the default text of the edit field.

@MULTIEDIT:<Value> Creates a multi-line edit control with
<Value> as control name in the form. The
contents of the first paragraph of the object
will be the default text of the edit field.

@LISTBOX:<Value> Creates a listbox control with <Value> as
control name in the form. The contents of the
paragraphs of the object will be the entries in
the listbox.

@COMBOBOX:<Value> Creates a combobox control with <Value>
as control name in the form. The contents of
the paragraphs of the object will be the
entries in the list.

@RADIOBUTTON:<Group-
name>,<Value>

Creates a radiobutton control. If the contents
of the first paragraph contain 'T', 'X' or '1', the
control will be checked.

@CHECKBOX:<Group-
name>,<Value>

Creates a checkbox control. If the contents
of the first paragraph contain 'T', 'X' or '1', the
control will be checked.

@BUTTON:<Value> Creates a button control. The contents of the
first paragraph will be the button text.

@SUBMIT:<Value> Creates a Submit button control. The
contents of the first paragraph will be the
button text.

@RESET:<Value> Creates a Reset button control. The contents
of the first paragraph will be the button text.

<Value> is the name of the HTML form control.

Picture Objects

Value Meaning

@IMAGE:<Value> Creates an image control.

These form objects will be exported with the designed coordinates. Normal objects
can have other coordinates based on their displayed data e.g. as text objects that
have not been filled completely. Some input controls cannot be placed very precisely
on a certain position. Their size depends on the data they currently display. Therefore
a 1:1 representation of List & Label to HTML is not possible.

Programming Reference

347

Note: Only entries whose object size is large enough to be printed by List & Label
can be exported. This means, that e.g.: if you have a text object that will become a
combobox in the exported form, it must be large enough for all paragraphs to be
printed.

7.3.3 JQM Export

Overview

The JQM (jQuery Mobile) export creates HTML formatted reports using the jQuery
Mobile framework and Javascript. The created files are optimized for display on
mobile devices. Information about JQM can be found on www.jquerymobile.com.
The framework is loaded from a CDN (Content Delivery Network); therefore an active
internet connection is required for display.

Limitations

There are several limitations due to the target format. The most important are:

 The created pages are optimized for display on mobile devices.

 Only tables are exported and therefore only list projects are supported.

 Table of contents and index are not supported.

 Text, RTF text and HTML text in table cells are specially supported. All other
objects will be exported as picture.

 Only footer lines of the last page or the last ones of a table are supported, as
this export is not page based.

 With local access the according rights (IE) have to exist to be able to load the
pages. With some browsers, access to file:// can cause problems. As soon as
the pages are accessed via http://, the problem should not occur anymore.

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the JQM export module in this
chapter. These options can be modified/read using the methods
LlXSetParameter(..."JQM"...) and LlXGetParameter(..."JQM"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi, screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0..100, with 100
representing the highest quality (least compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

http://www.jquerymobile.com/

The Export Modules

348

Picture.BitsPerPixel: Defines the color depth of the generated pictures.

Value Meaning

1 Black & White

24 24bit True Color

Default 32

Picture.Format: Defines the format of the generated pictures.

Value Meaning

JPG JPEG picture

PNG PNG picture

Default PNG

Export.Path: Defines the target path for the export with closing backslash "\". If this
option is empty, a file selection dialog will always be displayed.

Export.File: File name of the first HTML page to be generated. Default: "index.htm".

Export.Quiet: Defines if the export should be executed with user interaction.

Value Meaning

0 Interaction/dialogs allowed

1 No file selection dialog for the target path is displayed (in case Export.Path is
set) and no "Overwrite?" query is made. Also no summary of overlapping
objects that were ignored is displayed.

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically.

1 Calls ShellExecute() with Export.File so that normally a web
browser is started.

Default 0

Verbosity.RTF: Defines the way how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text (converted to HTML)

Programming Reference

349

Value Meaning

2 As unformatted text

Default 1

Verbosity.LLXObject.HTMLObj: Configures how the HTML object should be
exported.

Value Meaning

0 Ignore object

1 Object as embedded HTML. Only the HTML text between the
<BODY> and </BODY> tags will be exported. Please note the
hint on exporting limitations.

Default 1

JQM.CDN: CDN provider of the CSS and JS files (Content Distribution Network).

Value Meaning

jQuery http://code.jquery.com

Microsoft http://ajax.aspnetcdn.com

Default jQuery

JQM.Title: Title of the generated HTML files. Default: "".

JQM.ListDataFilter: Specifies if a search filter bar should be displayed in the result.

Value Meaning

0 No display of the search filter bar

1 Displays a search filter bar and filters the data accordingly

Default 1

JQM.UseDividerLines: Configures the usage of divider lines.

Value Meaning

0 All lines of a table are output as a "normal" data line

1 Header lines, footer lines and group lines are output as special divider lines
with an own style

Default 1

The Export Modules

350

JQM.BreakLines: Configures the wrapping behavior of texts in the result.

Value Meaning

0 Text won't be wrapped but marked with "..." at the end if the width is
insufficient

1 Text is automatically wrapped

Default 1

JQM.BaseTheme: Theme of the data lines. Values: "a", "b", "c", "d", "e". See
http://jquerymobile.com/test/docs/lists/lists-themes.html

Default: "d".

JQM.HeaderTheme: Theme of the headers (Line with navigation and header).
Values: "a", "b", "c", "d", "e". See http://jquerymobile.com/test/docs/lists/lists-
themes.html

Default: "a".

JQM.DividerTheme: Theme of the divider lines (see JQM.UseDividerLines). Values:
"a", "b", "c", "d", "e". See http://jquerymobile.com/test/docs/lists/lists-themes.html

Default: "b".

7.3.4 MHTML Export

Overview

The MHTML (Multi Mime HTML) export module functions analogously to the XHTML
export module. However, pictures are embedded MIME encoded into the export file.
Thus the result is only one file (.MHT). This is most useful for sending invoices by
mail, as the recipient can open the file directly and does not need any access to
further (external) picture files.

Programming Interface

All options of the XHTML exporter are supported; pass "MHTML" as module name.
The option Export.AllInOneFile will be ignored, as this format always results in one
file only.

7.3.5 Picture Export

Overview

This module creates a graphics file (JPEG, BMP, EMF, TIFF, Multi-TIFF, PNG) for
every printed page. The file names of the created graphics will be enumerated. If the
file name contains the format identifier "%d", this identifier will be replaced by the
page number.

Programming Reference

351

Limitations

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the picture export module in this
chapter. The options can be modified/read using the methods LlXSetPara-
meter(..."<Exportername>"...) and LlXGetParameter(..."<Exportername>"...).
<Exportername> can be "PICTURE_JPEG", "PICTURE_BMP", "PICTURE_EMF",
"PICTURE_TIFF", "PICTURE_MULTITIFF" or "PICTURE_PNG" depending on the graphic
format.

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi, screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0..100, with 100
representing the highest quality (worst compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths. Not all
picture formats can display all color depths.

Value Meaning

1 Black & White

4 16 Colors

8 256 Colors

24 24bit True Color

Default JPEG, PNG: 24, Other: 8

Picture.CropFile: Removes dispensable white frame. Supported export formats:
PNG, JPEG and TIFF. This option is not supported when used in services (e.g. IIS) as
GDI+ is not available there.

Value Meaning

0 Image will not be cropped

1 Image will be cropped

Default 0

Picture.CropFrameWidth: Defines the border of a cropped file in pixel.

Export.File: File name containing "%d" as format identifier. The files for the pages
will be named by replacing the placeholder by the page number. If you do not set
this option, you will get a simple page numbering for the result files. If this option is
empty, a file selection dialog will always be displayed.

The Export Modules

352

Export.Path: Path where the exported files should be saved.

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 With user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with the first generated graphic file.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

TIFF.CompressionType: Specifies the compression type for the TIFF export. Please
note that not all viewers support compression. For CCITTRLE, CCITT3 and CCITT4
Picture.BitsPerPixel must be set to 1 or to 24 for JPEG.

Value Meaning

None No compression

CCITTRLE CCITT Modified Huffmann RLE

CCITT3 CCITT Group 3 Fax encoding

CCITT4 CCITT Group 4 Fax encoding

JPEG JPEG DCT compression

ZIP ZIP compression

LZW LZW compression

Default None

TIFF.CompressionQuality: Specifies the compression quality for the TIFF export.
Default: 75

Programming Reference

353

7.3.6 PDF Export

Overview

The PDF export module creates documents in the Portable Document Format. This
format can be viewed platform-independently with the free Adobe Acrobat Reader®
software.

Limitations

Besides others, the following hints and limitations should be considered:

 Unicode/Multibyte characters will be embedded through CID (character
identifier). Please make sure to set this mode in the print out dialog. Japanese
and Chinese characters require that the corresponding Adobe Font Packages are
provided on the system. Under certain circumstances, right-to-left charsets in
RTF objects are not exported accurately. Fonts other than Japanese or Chinese
might not be embedded correctly. Hint: When embedding fonts through CID the
PDF/A standard is not fully supported.

 Rotated boldface/italic true type fonts may have a slightly different width.

 Fonts with a font width <> 0 are not supported.

 Bitmap fonts cannot be used/embedded.

 Line ends are displayed with round caps.

 Not all EMF records can be displayed accurately – if you are using complex
EMFs, you should pass them as bitmaps or choose "export as picture" in the
designer.

Programming Interface

You can find a description of all options used in the PDF export module in this
chapter. The options can be modified/read using the methods
LlXSetParameter(..."PDF"...) and LlXGetParameter(..."PDF"...).

PDF.Title: Specifies the title of the generated PDF document. Default: title passed to
LlPrintWithBoxStart().

PDF.Subject: Specifies the subject of the generated PDF document. Default: empty.

PDF.Keywords: Specifies the keywords of the generated PDF document. Default:
empty.

PDF.Encryption.EncryptFile: If this parameter is set, the result file will be
encrypted. Other different options are then enabled, which are described below.

Value Meaning

0 Do not encrypt file

1 Encrypt file

Default 0

The Export Modules

354

PDF.Encryption.EnablePrinting: If this parameter is set, the file can be printed even
if it is encrypted. Only effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Printing is not enabled

1 Printing is enabled

Default 0

PDF.Encryption.EnableChanging: If this parameter is set, the file can be changed
even if it is encrypted. Only effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Changing is not enabled

1 Changing is enabled

Default 0

PDF.Encryption.EnableCopying: If this parameter is set, the file can be copied to
the clipboard even if it is encrypted. Only effective if PDF.Encryption.EncryptFile is
set to "1".

Value Meaning

0 Copying is not enabled

1 Copying is enabled

Default 0

PDF.Encryption.Level: Sets the encryption strength. Only effective if
PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 40 bit encryption

1 128 bit encryption (needs Acrobat Reader version 5 and higher)

Default 0

PDF.OwnerPassword: The owner password for the encrypted file. This password is
needed to edit the file. If no password is given, a random password will be assigned.
We recommend that you always explicitly choose a suitable password.

Programming Reference

355

PDF.UserPassword: The user password for the encrypted file. This password is
needed to access the encrypted file. If no password is given, access is possible
without a password, but may be limited (see above).

PDF.FontMode: Sets the TrueType embedding mode.

Value Meaning

0 No embedding. The TrueType fonts on the target machine will be
used (if available), or the font mapper will choose substitutes.

1 All TrueType fonts are embedded.

2 Only symbol fonts are embedded.

3 No embedding. All fonts will be replaced by PostScript standard
fonts.

4 Subset embedding. Only the characters from the selected code
page are embedded.

5 Subset embedding. Only the used characters are embedded.

6 CID fonts will be used. Suggested for unicode text.

7 Draw fonts as curves.

Default 5

PDF.ExcludedFonts: Allows you to pass a semicolon-separated list of fonts that will
never be embedded, regardless of the PDF font mode setting. Default: "Arial".

PDF.CompressStreamMethod: Sets the compression method for the PDF stream.

Value Meaning

0 No compression

1 Flate compression

2 Run-Length compression

3 FastFlate compression

Default 1

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0..100, with 100
representing the highest quality (least compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

PDF.DontStackWorldModifications: Influences the way that coordinate
transforming records are handled and may help to avoid rounding differences or

The Export Modules

356

objects getting lost when dealing with very complex custom EMF records. Set to "1"
to enable (default: "0").

Export.Path: Path where the exported files should be saved. If this option is empty,
a file selection dialog will always be displayed.

Export.File: File name of the document.

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes – even overwrite warnings - will be
displayed (only if Export.Path was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

PDF.PDFAMode: Use to create a PDF of type PDF/A.

Value Meaning

0 no PDF/A is created

1 create a PDF/A-1a

Default 0

Programming Reference

357

PDF.Author: Set the Author tag of the PDF file. Default: empty.

7.3.7 Powerpoint Export

Overview

The Powerpoint export module creates documents in Microsoft Powerpoint® format.
The creation is executed independently from the installation of the product, it is
therefore natively supported. A full layout-preserving export is executed.

Limitations

Please note the following limitations and hints for the Powerpoint export module:

 Requires .NET Framework 3.5.

 Compatible with Microsoft Powerpoint® 2007 and higher.

 It is recommended that the width of all columns of a line matches the total width
of the report container. During the design, try to always justify the borders of
different cells that occur in multiple table sections (header line, data line etc.) or
multiple line definitions. Otherwise the result can be falsified in Microsoft Word.

 Columns cannot be smaller than 0,54 cm (5,4mm). All columns will be
automatically resized to this Size by Microsoft Powerpoint.

 Fonts will be reduced by 1%, otherwise the result can be wrong in Microsoft
Powerpoint.

 Table lines that contain a picture will be exported with a fixed height.

 A mix of different page formats is not supported. To achieve an export of e.g.
portrait and landscape format, all pages of the same format can be each
exported to a separate document.

 Tabulators are not supported.

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the Powerpoint export module in this
chapter. These options can be modified/read by the application using the methods
LlXSetParameter(..."PPTX "...) and LlXGetParameter(..."PPTX"...).

Resolution: Defines the resolution in dpi for the generation of pictures. Default:
96dpi, screen resolution.

Picture.BitsPerPixel: Defines the color depth of the generated pictures.

Value Meaning

1 Black & White

24 24bit True Color

Default 24

The Export Modules

358

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as rectangle

2 Object as picture

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as ellipse

2 Object as picture

Default: 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as line

2 Object as picture

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object

2 Object as picture

Default 1

Programming Reference

359

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object

Default 1

Verbosity.LLXObject: Configures how LLX objects (OLE, HTML, chart) should be
exported.

Value Meaning

0 Ignore object

1 Object as picture

Default: 1

PPTX.FontScalingPercentage: Scaling factor to correct font sizes. Default: 100
(=100% font size)

PPTX.Animation: Defines the used Transition for a slide change

Value Meaning

0 No Animation

1 Cut-Animation

2 Fade-Animation

3 Push-Animation

4 Cover-Animation

5 Wipe-Animation

Default 0

Export.File: Defines the file name of the generated Word document. If empty, the
file selection dialog will be displayed.

Export.Path: Defines the path of the generated Word document.

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

The Export Modules

360

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.File
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File so that usually Microsoft
Powerpoint® should be executed.

Default 0

7.3.8 RTF Export

Overview

The RTF export module creates documents in Rich Text Format based on Microsoft
specification 1.5/1.7. The exported files have mainly been optimized for Microsoft
Word and Lotus Word Pro. Please note that the rendering of the exported files can
differ with different word processors.

Limitations

Besides others, the following hints and limitations should be considered:

 Rows that are anchored to each other are not correctly exported.

 The max. color depth is 24 bit.

 Shadows of rectangle objects are not supported.

 Tabs will be replaced by blanks.

 Objects should not be placed too close to the page borders. Some word
processors create page breaks in such cases. This means that all following
objects will then automatically be placed on the next page.

 The option 'Separators fixed' in the table object is not supported.

 Not all background patterns available in List & Label can be transformed to RTF.
The number of patterns available in RTF is much smaller than that of the patterns
available in List & Label.

 The chart and HTML object are exported as pictures and thus cannot appear
transparently.

 Rotated RTF texts and pictures are not supported.

 Distances within table cells are not supported.

Programming Reference

361

 Paragraph spacing is not supported.

 Frames narrower than ½ pt (about 0.4 mm in List & Label) will not be displayed
correctly.

 Frames of the same size in X and Y direction will not be displayed as squares.

 Object frames are not supported.

 Gradient fills are not supported.

 Rotated text is not supported.

 Custom drawings in callbacks are not supported.

 TotalPages$() may not be used in rotated text objects.

 Paragraph distances are not supported.

 Issue print is not supported.

 A mix of different page formats is not supported. To achieve an export of e.g.
portrait and landscape format, all pages of the same format can be each
exported to a separate document.

Known other issues:

 Frames smaller than ½ pt will not be displayed correctly

 Positon frames in Word are handled unusual, because length properties are
interpreted incorrect by Word

 Small line objects may be not displayed because the corresponding bitmap gets
an offset causing the line object to be out of the frame.

 Word 2000 and later will not display table frames correctly

 Word 2000 will not display the index correctly

 Distances between cells are not supported

 Not all colors that can be used in List & Label are interpreted correctly by Word

 When exporting large images at large resolutions, these images are sometimes
not displayed by Word although they are referenced correctly in the RTF.

Programming Interface

You can find a description of all options used in the RTF export module in this
chapter. The options can be modified/read using the methods LlXSetPara-
meter(..."RTF"...) and LlXGetParameter(..."RTF"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi, screen resolution.

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths.

Value Meaning

The Export Modules

362

1 Black & White

4 16 Colors

8 256 Colors

24 24bit True Color

Default 24

UsePosFrame: Switches the text positioning method.

Value Meaning

0 Text boxes used for positioning

1 Position frames used for positioning

Default 0

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as frame

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

2 Object as shape object (Word 97 and later)

Default 2

Programming Reference

363

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

2 Object as shape object (Word 97 and later)

Default 2

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object

2 Object as picture

Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text

2 Object as picture

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object

Default 1

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Export.Path: Path where the exported files should be saved.

Export.File: File name of the RTF document. If this option is set to an empty string, a
file selection dialog will always be displayed.

The Export Modules

364

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 With user interaction (dialogs)

1 No dialogs or message boxes – even overwrite warnings - will be
displayed (only if Export.File was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

7.3.9 SVG Export

The SVG export module creates SVG code according to the Scalable Vector Graphics
(SVG) 1.1 (Second Edition) specification.

Overview

The export module collects all List & Label objects for the page currently being
printed and orders them according to their height, width and position. The position of
an object results from two values: left and top. They specify the distance from the
upper left page border. All objects are positioned absolutely on a page, which leads
to a more accurate export result.

Limitations

There are limitations set by the target format. The most important are listed now.

 Rows that are anchored to each other are not correctly exported.

 Decimal tabs will be transformed to right-aligned tabs.

 Any other tabs will be transformed to a blank.

Programming Reference

365

 The option 'Line break' in text objects and table columns is always active in the
export result.

 The option 'Separators fixed' in table objects is not supported.

 The list object option "fixed size" is not supported.

 The chart object is exported as a picture and thus cannot appear transparently.

 RTF text will be exported as pictures.

 Spacing before table lines is not supported.

 Diagonal lines are exported as images.

 Rotated text (RTF and plain) is not supported.

 Custom drawings in callbacks are not supported.

 Objects to be exported as picture should not overlap the object frame.

 Table frames of neighboring cells are not drawn so that they overlap each other,
but discretely. This can double the frame width and needs to be taken into
account during the design.

 TotalPages$() may not be used in rotated text objects.

 Even if the HTML object wraps over several pages, it will be exported in one
stream, i.e. no page wrap will occur.

 Embedded scripting functionalities may be lost.

 Shadow Pages are not supported.

 A mix of different page formats is not supported. To achieve an export of e.g.
portrait and landscape format, all pages of the same format can be each
exported to a separate document.

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the SVG export module in this
chapter. These options can be modified/read using the methods
LlXSetParameter(..."SVG"...) and LlXGetParameter(..."SVG"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0...100, with 100
representing the highest quality (least compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths.

Value Meaning

The Export Modules

366

1 Black & White

24 24bit True Color

Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG (and also as a complete rectangle for objects with
colored background).

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as complete Lineobject

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

Programming Reference

367

0 Ignore object

1 Object as text object

2 Object as JPEG

Default 1

Verbosity.Text.Frames: Configures how text object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right

1 Complete frame as box

Default 0

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object

Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.Table.Frames: Configures how table frames should be exported.

Value Meaning

0 Ignore table frame

1 Only horizontal lines of table frames

2 The whole table line including all frames

3 Cell-specific frames (uses line objects)

Default 3

The Export Modules

368

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.LLXObject.HTMLObj: Configures how the HTML object should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

SVG.Title: Specifies the title of the generated SVG document. Default: Title used
with LlPrintWithBoxStart().

Export.Path: Path where the exported files should be saved. If this option is empty,
a file selection dialog will always be displayed.

Export.File: File name of the first SVG page. Default: "index.svg". You may also use
printf format strings like "%d" in the file name (ex. "Export Page %d.svg"). In this case,
the files for the pages will be named by replacing the placeholder with the correctly
formatted page number. Otherwise, you will get a simple page numbering for the
result files.

Export.AllInOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single SVG file.

1 The result is a single SVG file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Programming Reference

369

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

Hyperlinks

Hyperlinks can be embedded in text, table and RTF objects directly in the Designer
using the Hyperlink$() function. Dynamic hyperlinks and formulas can be realized in
this way.

Another way of creating hyperlinks is via the object name. The names of text and
picture objects are parsed for the string "/LINK:<url>". Whenever this string is found,
a hyperlink is generated. Thus, if you name your picture object "combit
/LINK:http://www.combit.net", this would create a picture hyperlink during export to
SVG.

7.3.10 Text (CSV) Export

Overview

The CSV-Export exports data from table objects to a text format. The separator and
framing character can be optionally set. The result is one single text file containing
the data from all table objects. Please note that the layout is not preserved in any
way, this is purely a data conversion export.

Limitations

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the TXT export module in this
chapter. The options can be modified using the methods LlXSetParameter(..."TXT"...)
and read by calling LlXGetParameter(..."TXT"...).

The Export Modules

370

Export.Path: Path where the exported files should be saved.

Export.File: File name of the document. If this option is empty, a file selection dialog
will always be displayed, default "export.txt".

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
associated file type.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

TXT.FrameChar: Specifies the framing character for the columns.

Value Meaning

NONE No framing

" " as framing character

' ' as framing character

TXT.SeparatorChar: Specifies the separator character.

Value Meaning

NONE No separator

TAB Tab as separator

BLANK Blank as separator

, , as separator

Programming Reference

371

; ; as separator

TXT.IgnoreGroupLines: Allows group header and footer lines to be ignored in the
resulting text file.

Value Meaning

0 Group lines are exported

1 Group lines are ignored

Default 1

TXT.IgnoreHeaderFooterLines: Allows header and footer lines to be ignored in the
resulting text file.

Value Meaning

0 Header and footer lines are exported

1 Header and footer lines are ignored

2 Header and footer lines are exported once on the first page. To
export the footer lines only on the last page, set the appearance
condition to LastPage().

Default 1

TXT.Charset: Specifies the character set of the result file. The target code page
needs to be passed in addition (e.g. 932 for Japanese) using
LL_OPTION_CODEPAGE.

Value Meaning

ANSI Ansi character set

ASCII Ascii character set

UNICODE Unicode character set

Default UNICODE

7.3.11 Text (Layout) Export

Overview

The Layout-Export can alternatively create a text file that resembles – as far as the
format allows – the layout of the project. Please make sure that you choose a font
size that is large enough in the Designer. If the lines of text in your project cannot be
assigned to different lines in the text file, lines may be overwritten, resulting in a loss
of data in the result file. A font size with a minimum of 12 pt is suggested.

Limitations

 Issue print is not supported.

The Export Modules

372

Programming Interface

You can find a description of all options used in the Text export module in this
chapter. The options can be modified using the methods
LlXSetParameter(..."TXT_LAYOUT"...) and read by calling LlXGet-
Parameter(..."TXT_LAYOUT"...).

Verbosity.Text: Configures how text typed columns should be exported.

Value Meaning

0 Ignore cell

1 Cell as text

Default 1

Verbosity.RTF: Configures how RTF typed columns should be exported.

Value Meaning

0 Ignore cell

1 As RTF stream

2 As unformatted text

Default 2

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object

Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

Default 1

Export.Path: Path where the exported files should be saved.

Export.File: File name of the document. If this option is empty, a file selection dialog
will always be displayed, default "export.txt".

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

Programming Reference

373

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
associated file type.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

Export.AllInOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single TXT file. If the
filename contains the format identifier "%d", this identifier will be
repaced by the corresponding page number.

1 The result is a single TXT file (Export.File), containing all printed
pages.

Default 1

TXT.Charset: Specifies the character set of the result file.

Value Meaning

ANSI Ansi character set

ASCII Ascii character set

UNICODE Unicode character set

Default UNICODE

The Export Modules

374

7.3.12 TTY Export

Overview

The TTY export format can be used to directly communicate with dot matrix printers.
This brings a great performance boost compared to the printer driver approach.

Programming Interface

You can find a description of all options used in the TTY export module in this
chapter. The options can be modified using the methods LlXSetParameter(..."TTY"...)
and read by calling LlXGetParameter(..."TTY"...).

Export.Path: Path where the exported PRN file should be saved.

Export.File: File name of the PRN file. If this option is empty, a file selection dialog
will always be displayed.

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

TTY.AdvanceAfterPrint: Specifies the behavior when the print job is finished.

Value Meaning

FormFeed Form feed

ToNextLabel Advances to the next label

AfterNextLabel Leaves one blank label as separator

TTY.Emulation: Specifies the emulation used for the export.

Value Meaning

ESC/P ESC/P emulation

ESC/P 9Pin ESC/P emulation for 9-pin dot matrix printers

PlainTextANSI Plain text ANSI emulation

PlainTextASCII Plain text ASCII emulation

PlainTextUNICODE Plain text Unicode emulation

NEC Pinwriter NEC Prinwriter emulation

IBM Proprinter XL24 IBM Proprinter XL24 emulation

Programming Reference

375

Value Meaning

PCL PCL emulation

TTY.Destination: Export target. Possible values are "LPT1:", "LPT2:",..."FILE:" or
"FILE:<Filename>". If "FILE:" is used, a file selection dialog will be displayed.

TTY.DefaultFilename: Default file name for this dialog.

7.3.13 Windows Fax Export

You can send List & Label documents directly as a fax using the fax service of
Windows. If you connect a fax modem to such an operating system, the fax driver
will be automatically installed in most versions of these operationg systems.

Additional information is needed for automatic fax sending (that is, no dialog will be
displayed for the fax destination, cover page etc.). You can preset these parameters
using the LL_OPTIONSTR_FAX... option strings (see LlSetOptionString()).

Example:

HLLJOB hJob;

hJob = LlJobOpen(0);

LlSetOptionString(hJob, LL_OPTIONSTR_FAX_RECIPNAME,

 "combit");

LlSetOptionString(hJob, L_OPTIONSTR_FAX_RECIPNUMBER,

 "+497531906018");

LlSetOptionString(hJob, LL_OPTIONSTR_FAX_SENDERNAME,

 "John Doe");

LlSetOptionString(hJob, LL_OPTIONSTR_FAX_SENDERCOMPANY,

 "Sunshine Corp.");

LlSetOptionString(hJob, LL_OPTIONSTR_FAX_SENDERDEPT,

 "Development");

LlSetOptionString(hJob, LL_OPTIONSTR_FAX_SENDERBILLINGCODE,

 "4711");

// ...

LlJobClose(hJob);

If these options are not set and the user has not entered any expressions in the fax
parameters dialog, export to MS FAX will not be available.

This module has no programming interface.

Various established fax applications can be used from List & Label with the
corresponding printer (fax) driver. If the fax application supports passing of the fax
number by the document, the number input dialog can be suppressed in most cases.
To use e.g. David from the company Tobit, you can use the @@-command. Place a
text object in the Designer and insert the line:

"@@NUMBER "+<fax number resp. field name>+"@@"

The Export Modules

376

The fax driver knows the syntax and sends the print job without any user interaction
with the placed fax number. Other fax applications offer similar possibilities – we
recommend taking a look at the documentation of your fax application.

7.3.14 Word Export

Overview

The Word export module creates documents in Microsoft Word® format. The
creation is executed independently from the installation of the product, it is therefore
natively supported. A full layout-preserving export is executed. Tables are created on
continuous pages to support editing later.

Limitations

Please note the following limitations and hints for the Word export module:

 Requires .NET Framework 3.5.

 Compatible with Microsoft Word® 2007 and higher.

 It is recommended that the width of all columns of a line matches the total width
of the report container. During the design, try to always justify the borders of
different cells that occur in multiple table sections (header line, data line etc.) or
multiple line definitions. Otherwise the result can be falsified in Microsoft Word.

 Table lines that contain a picture will be exported with a fixed height.

 A mix of different page formats is not supported. To achieve an export of e.g.
portrait and landscape format, all pages of the same format can be each
exported to a separate document.

 Due to format restrictions it might be necessary to adapt the report's layout
before exporting to DOCX. We suggest to thoroughly test the output before
redistribution. Also note the options DOCX.CellScalingPercentageHeight and
DOCX.CellScalingPercentageWidth.

 Tabulators are not supported.

 Issue print is not supported.

 The fit option "compress" in the properties of a column is not supported.

Programming Interface

You can find a description of all options used in the DOCX export module in this
chapter. These options can be modified/read by the application using the methods
LlXSetParameter(..."DOCX"...) and LlXGetParameter(..."DOCX"...).

Resolution: Defines the resolution in dpi for the generation of pictures. Default:
96dpi, screen resolution.

Picture.BitsPerPixel: Defines the color depth of the generated pictures.

Value Meaning

1 Black & White

Programming Reference

377

24 24bit True Color

Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as rectangle

2 Object as picture

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as ellipse

2 Object as picture

Default: 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as line

2 Object as picture

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

The Export Modules

378

1 Object as text object

2 Object as picture

Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted text

2 As unformatted text

3 Object as picture

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object

Default 1

Verbosity.LLXObject: Configures how LLX objects (OLE, HTML, chart) should be
exported.

Value Meaning

0 Ignore object

1 Object as picture

Default: 1

DOCX.FontScalingPercentage: Scaling factor to correct font sizes. Default: 100
(=100% font size)

DOCX.CellScalingPercentageHeight: Scaling factor to correct the cell heights.
Default: 100 (=100% cell height)

DOCX.CellScalingPercentageWidth: Scaling factor to correct the cell widths.
Default: 100 (=100% cell width)

DOCX.AllPagesOneFile: Enables creation of a separate Word document for each
page.

Value Meaning

0 A separate Word document is create per page

1 All pages are created in the same Word document

Default 1

Programming Reference

379

DOCX.FloatingTableMode: Enables if tables will be linked. For a larger amount of
pages with tables this option should be set to '0', because Microsoft Office Word can
only link 46 tables.

Value Meaning

0 Table won't be linked

1 Tables will be linked

Default 1

DOCX.IgnoreCellPadding: Defines wether the Border Spacing will be ignored.

Value Meaning

0 Border Spacing will not be ignored

1 Border Spacing will be ignored

Default 0

Export.File: Defines the file name of the generated Word document. If empty, the
file selection dialog will be displayed.

Export.Path: Defines the path of the generated Word document.

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.File
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File so that usually Microsoft
Word® should be executed.

Default 0

7.3.15 XHTML/CSS Export

The XHTML export module creates XHTML code according to the XHTML 1.0
specification and CSS code according to the CSS 2.1 specification.

The Export Modules

380

Overview

The export module collects all List & Label objects for the page currently being
printed and orders them according to their height, width and position. The position of
an object results from two values: left and top. They specify the distance from the
upper left page border. All objects are positioned absolutely on a page, which leads
to a more accurate export result.

Limitations

There are limitations set by the target format. The most important are listed now.

 Rows that are anchored to each other are not correctly exported.

 Decimal tabs will be transformed to right-aligned tabs.

 Any other tabs will be transformed to a blank.

 The option 'Line break' in text objects and table columns is always active in the
export result.

 The option 'Separators fixed' in table objects is not supported.

 The chart object is exported as a picture and thus cannot appear transparently.

 The transformation of RTF text to HTML code is carried out by an RTF parser.
This parser interprets the basic RTF formatting. Extended RTF functionality such
as embedded objects will be ignored.

 Diagonal lines are exported as images.

 Gradient fills with more than 3 colors are not supported.

 Objects to be exported as picture should not overlap the object frame. Therefore
e.g. barcode objects with fixed bar width must fit in the object rectangle.

 Custom drawings in callbacks must be exported as picture.

 Table frames of neighboring cells are not drawn so that they overlap each other,
but discretely. This can double the frame width and needs to be taken into
account during the design.

 Even if the HTML object wraps over several pages, it will be exported in one
stream, i.e. no page wrap will occur.

 Embedded scripting functionalities may be lost.

 Issue print is not supported.

 Rotated descriptions in the crosstab object are not supported.

Programming Interface

You can find a description of all options used in the XHTML export module in this
chapter. These options can be modified/read using the methods
LlXSetParameter(..."XHTML"...) and LlXGetParameter(..."XHTML"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi screen resolution.

Programming Reference

381

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0..100, with 100
representing the highest quality (least compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths.

Value Meaning

1 Black & White

24 24bit True Color

Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG (and also as a complete rectangle for objects with
colored background).

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Line: Configures how line objects should be exported.

The Export Modules

382

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object

2 Object as JPEG

Default 1

Verbosity.Text.Frames: Configures how text object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)

1 Complete frame as box

Default 0

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text (parsed and converted to HTML)

2 As unformatted text (uses the default font specified in the project
file)

3 Object as JPEG

Default 1

Verbosity.RTF.Frames: Configures how RTF object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)

1 Complete frame as box

Default 0

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object

Programming Reference

383

Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.Table.Frames: Configures how table frames should be exported.

Value Meaning

0 Ignore table frame

1 Only horizontal lines of table frames

2 The whole table line including all frames

3 Cell-specific frames (uses CSS)

Default 3

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

Default 1

Verbosity.LLXObject.HTMLObj: Configures how the HTML object should be
exported.

Value Meaning

0 Ignore object

1 Object as JPEG

2 Object as embedded HTML. Only the HTML text between the
<BODY> and </BODY> tags will be exported. Please note the
hint on exporting limitations.

Default 2

XHTML.Title: Specifies the title of the generated XHTML document. Default: Title
used with LlPrintWithBoxStart().

The Export Modules

384

XHTML.UseAdvancedCSS: Allows the usage of non-standard CSS formatting styles.

Value Meaning

0 No non-standard CSS formatting styles are used

1 Non-standard CSS formatting styles may be used, e.g. to create a
gradient fill.

Default 0

XHTML.ToolbarType: Specifies if an additional toolbar will be created.

Value Meaning

0 No toolbar will be created.

1 A toolbar with color scheme Skyblue will be created.

2 A toolbar with color scheme Blue will be created.

3 A toolbar with color scheme Black will be created.

4 A toolbar with color scheme Web will be created.

Default 1

XHTML.UseSeparateCSS: Specifies if a separate CSS file will be created.

Value Meaning

0 CSS will be added to the HEAD area of the XHTML file.

1 CSS will be created in a separate file.

Default 0

Layouter.Percentaged: This option configures whether the layout should be defined
in absolute values or with values expressed as percentage.

Value Meaning

0 Layout of the X coordinates in absolute values (pixel)

1 Layout of the X coordinates with values expressed as percentage

Default 0

Layouter.FixedPageHeight: Configures whether all pages should be forced to have
the same page height.

Value Meaning

0 Layout can shrink on the last page (e.g. if no objects have been
placed in the page footer)

1 The page height is set as configured

Default 1

Export.Path: Path where the exported files should be saved. If this option is empty,
a file selection dialog will always be displayed.

Programming Reference

385

Export.File: File name of the first HTML page. Default: "index.htm". You may also
use printf format strings like "%d" in the file name (ex. "Export Page %d.htm"). In this
case, the files for the pages will be named by replacing the placeholder with the
correctly formatted page number. Otherwise, you will get a simple page numbering
for the result files.

Export.AllInOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single HTML file.

1 The result is a single HTML file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

Hyperlinks

Hyperlinks can be embedded in text, table and RTF objects directly in the Designer
using the Hyperlink$() function. Dynamic hyperlinks and formulas can be realized in
this way.

The Export Modules

386

Another way of creating hyperlinks is via the object name. The names of text and
picture objects are parsed for the string "/LINK:<url>". Whenever this string is found,
a hyperlink is generated. Thus, if you name your picture object "combit
/LINK:http://www.combit.net", this would create a picture hyperlink during export to
XHTML.

7.3.16 XML Export

Overview

The XML export module creates XML files. This allows flexible editing by other
applications. All available object properties are exported. If you require, you may
export data from tables only and ignore all further object properties.

Limitations

 Issue print is not supported.

Programming Interface

You can find a description of all options used in the XML export module in this
chapter. These options can be modified/read using the methods
LlXSetParameter(..."XML"...) and LlXGetParameter(..."XML"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates
and the generation of pictures. Default: 96 dpi, screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression
factor of the generated JPEG graphic. The value lies between 0..100, with 100
representing the highest quality (least compression). Takes effect only when the
source graphic is not the JPEG format, as encoding of JPEG to JPEG would result in
a quality loss. Default: 75

Picture.JPEGEncoding: Specifies how to encode JPEG images

Value Meaning

0 Save JPEGS as (external) files

1 Include pictures MIME encoded into the XML file

2 Ignore JPEG images

Default 0

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note
that the picture files will quickly get very large with higher color depths.

Value Meaning

1 Black & White

24 24bit True Color

Default 24

Programming Reference

387

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information

2 Object as JPEG

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information and object as JPEG

Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information and object as JPEG

Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information

2 Object as JPEG

Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information

2 Object as JPEG

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object

2 Object as JPEG

The Export Modules

388

Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As RTF stream

2 As unformatted text (uses the default font specified in the project
file)

3 Object as JPEG

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object

Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be
exported.

Value Meaning

0 Ignore object

1 Complete object information and object as JPEG

Default 1

XML.Title: Specifies the title of the generated XML document. Default: Title used
with LlPrintWithBoxStart().

Export.Path: Path where the exported files should be saved. If this option is empty,
a file selection dialog will always be displayed.

Export.File: File name of the first XML page. Default: "export.xml". You may also use
printf format strings like "%d" in the filename (ex. "Export Page %d.xml"). In this case,

Programming Reference

389

the files for the pages will be named by replacing the placeholder with the correctly
formatted page number. Otherwise, you will get a simple page numbering for the
result files.

Export.AllInOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single XML file.

1 The result is a single XML file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes – including overwrite warnings - will
be displayed (only if Export.Path was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
registered file extension.

Value Meaning

0 Result will not be displayed automatically.

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available

Default 1

Export.OnlyTableData: Only data from table lines will be exported.

Value Meaning

0 All objects are exported.

1 Only table cells and their data are exported.

Default 0

The Export Modules

390

7.3.17 XPS Export

Overview

The XPS export format is available as soon as .NET Framework 3.0 is installed on the
computer. The export module uses the installed Microsoft XPS printer driver for the
output.

Some limitations must be taken into account here too, for example the driver does
not currently (current as of 10/2009) support all clipping options of the Windows GDI.
This can result in display errors in the XPS file when exporting charts and generally
truncated/clipped objects. As a precaution, we recommend that you carefully check
the XPS output before delivery to your customers.

Programming Interface

You can find a description of all options used in the XPS export module in this
chapter. The options can be modified using the methods LlXSetParameter(..."XPS"...)
and read by calling LlXGetParameter(..."XPS"...).

Export.Path: Path where the exported files should be saved.

Export.File: File name of the document. If this option is empty, a file selection dialog
will always be displayed.

Export.Quiet: Use this option to configure the possibility of exporting without user
interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes – even a overwrite warning - will be
displayed (only if Export.Path was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed
automatically. The program that displays the result will be determined by the
associated file type.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0 Checkbox will be hidden

Digitally Sign Export Results

391

1 Checkbox will be available

Default 1

7.4 Digitally Sign Export Results
By accessing the products digiSeal® office and digiSeal® server from secrypt
GmbH, OpenLimit® CC Sign from OpenLimit® SignCubes or esiCAPI® from e.siqia
technologies GmbH, you can digitally sign PDF, TXT (if the option
"Export.AllInOneFile" is set) and Multi-TIFF files generated with List & Label. Besides
the software, you need a card reader and a signature card with a certificate stored on
it. Details of hard and software requirements can be found in the signature provider's
documentation.

digiSeal® office requires the digiSealAPI.dll or the dsServerAPI.dll in digiSeal® server
which is provided by secrypt. Windows NT or higher is mandatory for this package.
The DLL's corresponding signature file (*.signatur) may also be required. Please note
that you also will need a software certificate (*.pfx file) when using digiSeal® server.
Detailed information can be obtained directly from secrypt GmbH.

OpenLimit® CC Sign requires an interface DLL that is provided by OpenLimit®
SignCubes. For esiCAPI® from e.siqia technologies GmbH the files esicAPI.dll and
esicConfig.xml being shipped with the product have to be redistributed with your
application. The DLL for the respective connector will be provided directly from
e.siqia technologies GmbH.

7.4.1 Start Signature

Check the "Digitally sign created files" checkbox in the export target dialog. Please
note that this checkbox will only be available if one of the supported software suites
is found on the machine.

After creation of the export file, the signature process is started as usual. Please note
that this may change the file extension of the result file. If the signature process is
aborted or erroneous, the export will continue after displaying the error reason, if
applicable.

For legal reasons, a signature in "Quiet" mode is not possible; the PIN always needs
to be entered interactively. This is only possible with the product digiSeal® server 2
as it is a server component requiring a mass signature card.

7.4.2 Programming Interface

The signature process can be influenced by many parameters.

The Export Modules

392

Export.SignResult: Activates the signature of export files. This option corresponds
to the checkbox in the export target dialog. The value is disregarded if no supported
signature software is found on the machine.

Value Meaning

0 No digital signature

1 Exported files will be signed digitally

Default 1

Export.SignResultAvailable: Can be used to suppress the checkbox for digital
signature in the export target dialog.

Value Meaning

0 Hide checkbox

1 Show checkbox

Default 1

Export.SignatureProvider: Allows selection of the software to be used if more than
one of the supported products is installed.

Value Meaning

0 Default, no explicit choice of signature software

1 Sign using secrypt digiSeal® office

2 Sign using OPENLiMiT® SignCubes software

3

4

Sign using esiCAPI® V 1.1 (see Export.SignatureProvider.Option)

Sign using secrypt digiSeal® server 2

Default 0

Export.SignatureProvider.Option: Additional options for the signature provider
selected by Export.SignatureProvider.

Options for the "esiCAPI" provider:

Allows to select the used connector to use. Information on the diverse selectors is
available from e.siqia.

Value Meaning

0 Default, i.e. the first available connector is used

1 Sign using SignLive! CC® 4.1.2

2 Sign using SecSigner® 3.5.X

Default 0

Digitally Sign Export Results

393

Options for the signature provider "digiSeal® server 2":

This option has only one value and contains the connection data for digiSeal® server
2. The single values are separated with a pipe character each. The following structure
applies:

<ServerHost>:<ServerPort>|<File path to the software certificate for identification
and authentication >|<Password for the software certificate>

Example:

localhost:2001|secrypt_Testcertificate_D-TRUST_test.pfx|test

.NET component:

LL.ExportOptions.Add(LlExportOption.ExportSignatureProvider, "4");
LL.ExportOptions.Add(LlExportOption.ExportSignatureProviderOption,
"localhost:2001| secrypt_Testcertificate_D-TRUST_test.pfx|test");

C++:

LlXSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, _T("PDF"),
_T("Export.SignaturProvider "), _T("4"));
LlXSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, _T("PDF"),
_T("Export.SignaturProvider.Option"),
_T("localhost:2001|secrypt_Testcertificate_D-TRUST_test.pfx|test"));

Export.SignatureFormat: Can be used to choose the signature format. The available
values depend on the file type and signature software.

Value Meaning

pk7 Signature in pk7 format (container format that contains the signed file and
signature). Available for Multi-TIFF, TXT and PDF (the latter only for
SignCubes). The resulting file has the extension "pk7".

p7s Signature in p7s format. An additional file *.p7s is created during the export
process. Available for Multi-TIFF, TXT and PDF (the latter only for
SignCubes). If the export result is sent via email, both files are attached.

p7m Signature in p7m format (container format that contains the signed file and
signature). Available for Multi-TIFF, TXT and PDF (the latter only for
SignCubes). The resulting file has the extension "p7m".

PDF PDF signature. Available for PDF and Multi-TIFF (only for digiSeal® office and
B/W-Tiffs). A Multi-TIFF is converted to a PDF and signed with a special
Barcode that allows verifying the signed document even after printing the
PDF.

Default p7s for TXT and Multi-TIFF, PDF for PDF.

The Export Modules

394

7.5 Send Export Results via E-Mail
The files generated by the export modules can be sent via email automatically. List &
Label supports MAPI-capable email clients, as well as direct SMTP mailing. This
functionality is supported by all export modules except for TTY/MS fax export.

7.5.1 Setting Mail Parameters by Code

Like the other export options, some of the parameters for email dispatch can be set
by code. The user can also predefine some settings in the Designer (Project >
Settings). These are then used automatically. See the chapter on project parameters
for further details. A couple of other options can be set or read using
LlXSetParameter(..."<exporter name>"...) / LlXGetParameter(..."<exporter name>"...).
Note that the exporter name may be left empty to address all export modules.

Export.SendAsMail: Activates sending of export files via email. This option
corresponds to the checkbox "Send exported files by email" for the end user.

Value Meaning

0: No mail will be send

1: The exported files are sent via the specified provider (see below)

Default: 0

Export.SendAsMailAvailable: Enables you to hide the respective checkbox in the
dialog.

Value Meaning

0: Checkbox will be hidden

1: Checkbox will be available

Default: 1

Export.Mail.Provider: This option can be used to switch the mail provider. All
options apart from Simple MAPI need the CMMX20.DLL.

Value Meaning

SMAPI Simple MAPI

XMAPI Extended MAPI

SMTP SMTP

MSMAPI Simple MAPI (using the default MAPI client)

Default The default value depends on the system's or application's
settings (see below)

If the DLL cannot be found, the mail will be sent using system Simple MAPI
(MSMAPI).

Send Export Results via E-Mail

395

The provider is selected by either setting it explicitly using this option or letting the
user choose in the LsMailConfigurationDialog().

List & Label first of all tries to retrieve the application-specific mail settings from the
registry. These can be set using LsMailConfigurationDialog(). If your application
wants to support sending report results by email then you should provide the end-
user a menu-item (or similiar) in which's handler you call LsMailConfigurationDialog()
to enable the end-user to specify the mail settings.

Export.Mail.To: Recipient for the email.

Export.Mail.CC: CC- Recipient for the email.

Export.Mail.BCC: BCC- Recipient for the email.

Export.Mail.From: Sender of the email.

Export.Mail.ReplyTo: Target for reply email if different to "From" (SMTP only).

Export.Mail.Subject: Mail subject.

Export.Mail.Body: Mail body text.

Export.Mail.Body:text/plain: Mail body text in plain text format. Identical to
"Export.Mail.Body".

Export.Mail.Body:text/html: Mail body text in HTML format.

Export.Mail.Body:application/RTF: Mail body text in RTF format (only for XMAPI).

Export.Mail.AttachmentList: Additional attachments (besides the export results) as
tab-separated list ("\t", ASCII code 9).

Export.Mail.ShowDialog: Selection for sending the mail without any further user
interaction.

Value Meaning

0: The mail is sent directly without any further user interaction (at
least 1 TO recipient must be set). If no recipient is set the dialog
will be shown.

1: The standard "Send mail" dialog is displayed. The values passed
are preset there.

Default: 0

The Export Modules

396

Export.Mail.Format: Set the default for the file format selection dialog in the
preview. Valid values are: "TIFF", "MULTITIFF", "LL", "XML", "XFDF", "XPS", "PDF",
"JPEG", "PNG", "TTY:<emulation>", "EMF".

Export.Mail.SendResultAs: Allows the result of an HTML export to be sent directly
as HTML mail text.

Value Meaning

text/html If SMTP is chosen as mail provider, the export result is used as
HTML content of the mail. All other mail providers will ignore this
option.

empty The HTML result is sent as attachment.

Default Empty

Export.Mail.SignResult:

Value Meaning

0 Email will not be signed.

1 Email will be signed.

Default 0

The SMTP provider offers a set of additional options. These generally do not need to
be set explicitly, but should be set in the LsMailConfigurationDialog().

Export.Mail.SMTP.SocketTimeout: Socket timeout, in milliseconds, default 1000.

Export.Mail.SMTP.LogonName: Login name for the server, default: computer name
(usually unimportant).

Export.Mail.SMTP.SecureConnection: Connection security.

Value Meaning

-1 Automatic (use TLS when server supports it)

0 Turn TLS off (even when it is supported by the server)

1 Force SSL (Cancellation when server does not support SSL)

2 Force TLS (Cancellation when server does not support TLS)

Default -1

Export.Mail.SMTP.ServerAddress: SMTP server IP address or URL

Export.Mail.SMTP.ServerPort: SMTP server port, default 25.

Export.Mail.SMTP.ServerUser: SMTP server user name (if necessary)

Export.Mail.SMTP.ServerPassword: SMTP server password (if necessary)

Send Export Results via E-Mail

397

Export.Mail.SMTP.ProxyType: Proxy type (0=none, 1=Socks4, 2=Socks5)

Export.Mail.SMTP.ProxyAddress: Proxy IP address or URL

Export.Mail.SMTP.ProxyPort: Proxy port, default 1080

Export.Mail.SMTP.ProxyUser: Proxy user name (only Socks5)

Export.Mail.SMTP.ProxyPassword: Proxy password (only Socks5)

Export.Mail.SMTP.POPBeforeSMTP: Some SMTP server need a login via POP
before SMTP connection (0=no POP connection will be established, 1= POP
connection will be established)

Export.Mail.SMTP.SenderAddress: Mail sender's address (ex. xyz@abc.def) – is
also used for the SMTP protocol

Export.Mail.SMTP.SenderName: Real sender's name

Export.Mail.SMTP.ReplyTo: Reply to address (optional)

Export.Mail.SMTP.From: Substitutes the sender's address (combination of
"Export.Mail.SMTP.SenderName" and "Export.Mail.SMTP.SenderAddress") in the mail.
However, "Export.Mail.SMTP.SenderAddress" will still be used for the SMTP protocol.

Export.POP3.SocketTimeout: Timeout for socket connection in ms, default: 10000

Export.POP3.SecureConnection: Connection security.

Value Meaning

-1 Automatic (use TLS when server supports it)

0 Turn TLS off (even when it is supported by the server)

1 Force SSL (Cancellation when server does not support SSL)

2 Force TLS (Cancellation when server does not support TLS)

Default -1

Export.POP3.SenderDomain: Login domain, default: computer name

Export.POP3.ServerPort: default: 110

Export.POP3.ServerAddress: URL/IP address of POP3 server, default: "localhost"

Export.POP3.ServerUser: user for authentication

Export.POP3.ServerPassword: password for authentication

Export.POP3.ProxyAddress: proxy server address

Export.POP3.ProxyPort: proxy server port, default 1080

Export.POP3.ProxyUser: proxy server user name

The Export Modules

398

Export.POP3.ProxyPassword: proxy server password

Export.XMAPI.ServerUser: profile name for authentication

Export.XMAPI.ServerPassword: password for authentication

Export.XMAPI.SuppressLogonFailure: "0" / "1" show (no) dialog for login error

Export.XMAPI.DeleteAfterSend: "0" / "1" delete mail after sending

Example:

LlXSetParameter(hJob,LL_LLX_EXTENSIONTYPE_EXPORT,"","Export.SendAsMail",
"1");

This automatically sends the export result as email to the recipient selected via
Project > Settings. The globally selected mail settings will be used. If you want to
offer a default to your user, this can be done quite simply:

LlSetDefaultProjectParameter(hJob,"LL.Mail.To", "EMAIL", 0);

This example assumes that your database contains a field called EMAIL. If you want
to preset a specific address, please note that you need to use single quotes, as the
passed parameter needs to be evaluated as the formula:

LlSetDefaultProjectParameter(hJob,"LL.Mail.To", "'abc@xyz.de'", 0);

7.6 Export Files as ZIP Compressed Archive
Should, for example, the results of a picture or HTML export need to be sent by mail,
it is often more practical, to send the export results as a ZIP archive. All export
formats support a programming interface for this purpose. Data compression can be
set by the user via a dialog, by selecting the option "ZIP archive (*.zip)" from the list of
available file filters. Alternatively the output can be controlled by code. The following
options are available:

Export.SaveAsZIP: Activates the compression of exported data. If this option is set,
the ZIP-Filter will be selected in the dialog.

Value Meaning

0 Compression is not performed

1 The export data will be compressed into a ZIP archive

Default 0

Please note, that the user can modify the default settings via the dialog. If this is to
be inhibited, set the option "Export.Quiet" to "1".

Export Files as ZIP Compressed Archive

399

Export.SaveAsZIPAvailable: Here you can hide the ZIP archive filter within the file
select dialog.

Value Meaning

0 Filter hidden

1 User selection possible

Default 1

Export.ZIPFile: (Default-)Name of the ZIP file to be created e.g. "export.zip". For the
file names in the ZIP archive the following rules apply:

 if "Export.File" is not assigned, the name of the ZIP archive is used with a
corresponding file extension (e.g. "export.htm")

 if "Export.File" is assigned, this will then be used. If an export format generates
one file per page, the placeholder "%d" can be used for the page number e.g.
"Invoice Page %d.bmp" for the bitmap exporter

Export.ZIPPath: Path of the created ZIP files

Miscellaneous Programming Topics

400

8. Miscellaneous Programming Topics

8.1 Passing NULL Values
You can use NULL values in List & Label by passing a special string to the APIs. This
means that this field has no current value, e.g. a delivery date for a shipment that has
not yet occurred. Most database drivers may return a field content of NULL, which
you need to pass on to List & Label as "(NULL)", although that string can be altered if
needed. Basically the List & Label components handle database NULL values
automatically.

List & Label handles NULL-values according to the SQL-92 specification where
possible. An important effect of that is, that functions and operators, which get
NULL-values as parameter or operator generally also return NULL as the result. An
example is the following Designer formula:

Title+" "+Firstname+" "+Lastname

If Title is filled with NULL, the result of the formula is also NULL according to the
standard. To change this behaviour please refer to the option LL_OPTION_NULL_IS_-
NONDESTRUCTIVE.

8.2 Rounding
Please read the following important notes to ensure that you do not run into
inconsistencies with the data from your database: sum variables are not rounded, so
if you are not using only integers (i.e. invoices), we suggest that you use a rounding
function, or (better) do not use multiplication or division for sum variables.

8.3 Optimizing Speed
List & Label's standard settings are a good compromise between file sizes and
performance. Change the following settings and mind the following hints to tweak
performance for mission critical applications:

 Make sure a job is opened all the time. This prevents the repetitive loading
and unloading of DLLs.

 When printing to preview: switch off compression (see
LL_OPTION_COMPRESSSTORAGE). Keep in mind that this might lead to
considerably larger preview files, though.

 Set LL_OPTION_VARSCASESENSITIVE to 1. Note that this will mean that all
variables and fields are treated case sensitive from the moment of this
change. This may render existing projects unusable!

Project Parameters

401

 Avoid using RTF- and HTML-text where possible and use the "normal" text
object instead.

8.4 Project Parameters
List & Label enables you to set project specific parameters. The user may set these
and the application may query the values at print time.

For example, List & Label uses these parameters itself for the fax and email settings.
However, your own application may also save information to the project file in the
same way, too.

8.4.1 Parameter Types

There are different types of parameters that are distinguished by the nFlags
parameter passed to LlSetDefaultProjectParameter(). One of each of the three flag
alternatives FORMULA/VALUE, PUBLIC/PRIVATE and GLOBAL/LOCAL needs to be
used:

LL_PARAMETERFLAG_FORMULA (default)

The parameter is a formula that is evaluated at print time. The evaluated
value is returned with LlPrintGetProjectParameter().

LL_PARAMETERFLAG_VALUE

The parameter is a fixed value. This value is returned with
LlPrintGetProjectParameter().

LL_PARAMETERFLAG_PUBLIC (default)

The parameter can be changed within the Designer in the Project>Settings
dialog, where the user can enter a formula or value.

LL_PARAMETERFLAG_PRIVATE

The parameter cannot be changed in the Designer.

LL_PARAMETERFLAG_GLOBAL (default)

The parameter is added to the print project parameter list and will be saved
to the preview file if applicable (see LlStgsysGetJobOptionStringEx()).

LL_PARAMETERFLAG_LOCAL

The parameter is not added to the print project parameter list and will not be
saved to the preview file, as it is only valid for the local user or machine.

If the parameters are passed using LlSetDefaultProjectParameter(), they represent the
default values that the user may change according to his needs (if
LL_PARAMETERFLAG_PUBLIC is set).

Miscellaneous Programming Topics

402

If the project is loaded afterwards (LlDefineLayout(), LlPrint[WithBox]Start()) the
passed parameters will be replaced by those saved to the project file, i.e. they are
overwritten. Unchanged parameters are not saved to the project file and thus remain
with their default values. If required, you may set the
LL_PARAMETERFLAG_SAVEDEFAULT to override this behavior. This is especially
useful if the project parameter is queried before printing with LlGetUserParameter() to
offer report parametrization to the user.

Note: you may not pass multiple parameters with the same name but different
types!

8.4.2 Querying Parameter Values While Printing

After starting the printout using LlPrint[WithBox]Start(), the values for the project
parameters can be queried using LlPrintGetProjectParameter().

You may also change these values using LlPrintSetProjectParameter() or even add
further parameters. As the parameters may be (see above) saved to the preview file
and can be extracted from there using LlStgsysGetJobOptionStringEx(), you may
consistently save your own information in this way. In the preview file, the
parameters are saved with the prefix "ProjectParameter" before the actual name.

8.4.3 Predefined Project Parameters

List & Label uses project parameters for sending emails and faxes. The user may
change and edit the values. As List & Label expects the contents to be a formula, it
will be necessary to mask them as a string value ("…") whenever fixed values are
used.

Example:

LlPrintSetProjectParameter(hJob,"LL.FAX.RecipNumber","\"+497531906018\"",0);

LL.FAX.Queue LOCAL, PRIVATE

LL.FAX.RecipNumber GLOBAL, PUBLIC
[LL_OPTIONSTR_FAX_RECIPNUMBER]

LL.FAX.RecipName GLOBAL, PUBLIC
[LL_OPTIONSTR_FAX_RECIPNAME]

LL.FAX.SenderName GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX_SENDERNAME]

LL.FAX.SenderCompany GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX_SENDERCOMPANY]

LL.FAX.SenderDepartment GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX_SENDERDEPT]

Project Parameters

403

LL.FAX.SenderBillingCode GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX_SENDERBILLINGCODE]

LL.MinPageCount GLOBAL, FORMULA, PUBLIC

LL.ProjectDescription GLOBAL, VALUE, PUBLIC

LL.IssueCount GLOBAL, FORMULA, PUBLIC

LL.PageCondition GLOBAL, FORMULA, PUBLIC

LL.PrintJobLCID GLOBAL, FORMULA, PUBLIC

Further information on the project parameters can be found in the Designer manual.

Analog to the LL.FAX parameters LL.MAIL parameters exists, see chapter Setting
Mail Parameters by Code for further information.

Parameters that are not defined prior to LlDefineLayout() or were defined with the
PRIVATE-Flag are not editable.

For example, the application could pass the value for "LL.Mail.To" using an email field
(here: "EMAIL") from a database:

LlSetDefaultProjectParameter(hJob,"LL.MAIL.To","EMAIL",0);

The user may then add a "FIRSTNAME" and "NAME" field in order to enhance the
address:

FIRSTNAME + " " + NAME + " <" + EMAIL + ">"

The preview control automatically adopts the values of LL.FAX.* and LL.MAIL.*. In
addition, the values are passed to the export modules – these also use the user-
defined contents.

Please note a change in the behavior of the export modules up to version List & Label
9: if the user enters an email address in the settings dialog, the export result will
always be sent to this address, regardless of the settings made using
LlXSetParameter(). We recommend setting all mail settings using the project
parameter API. Unchanged projects should behave as before.

8.4.4 Automatic Storage of Form Data

If you are using the form elements, it is possible to perform automatic storage after
completion of the preview with the project parameters. Besides the automatic
storage of form data these parameters can also be used to define the file names for
sending e-mail out of the preview and for defining the default settings for saving out
of the preview. For this purpose, you can use the following project parameters:

SaveAs.Format Desired export format, e.g. "XML"

Miscellaneous Programming Topics

404

Supported formats are "TTY", "PDF", "EMF", "XPS",
"PRN", "TIFF" resp. "PICTURE_MULTITIFF", "JPEG"
resp. "PICTURE_JPEG", "PNG" resp.
"PICTURE_PNG", "LL" resp. "PRV", "XML" resp.
"XFDF". Further information can be found in
chapter "The Export Modules".

SaveAs.Filename Output file name, e.g. "test.xml"

SaveAs.ShowDialog Allows the save dialog to be enabled ("1") or
disabled ("0")

SaveAs.NoSaveQuery Disables the request as to whether the file should
be saved after completion or not.

Example:

LlPrintSetProjectParameter(hJob,"SaveAs.Format","XML",
 LL_PARAMETERFLAG_VALUE);
LlPrintSetProjectParameter(hJob,"SaveAs.Filename","test.xml",
 LL_PARAMETERFLAG_VALUE);
LlPrintSetProjectParameter(hJob,"SaveAs.ShowDialog","0",
 LL_PARAMETERFLAG_VALUE);
LlPrintSetProjectParameter(hJob,"SaveAs.NoSaveQuery","1",
 LL_PARAMETERFLAG_VALUE);

Web Reporting

405

8.5 Web Reporting
Using List & Label with ASP.NET is described in detail in chapter "Web Reporting". Of
course you can also use other programming languages for web reporting. In general
the following requirements apply:

 The server has to be a Windows system, List & Label can only be run on
Windows platforms. This restriction of course does not apply to the clients.

 The user account, under which the web application is running, requires access to
a printer driver. The dedicated printer does not have to be in the system
physically, the simple driver installation is sufficient. Also it has to be ensured that
the used user account can load the List & Label DLLs, meaning that the rights for
the DLL path were assigned.

 The actual web application carries out a silent export without user interaction (see
chapter "Export Without User Interaction") and directs the client to the export file
e.g. by a redirect.

The following image visualizes the principle:

User Request

to Server
Your Application

Data

Print

Preview

Export

User Can

View Result

in Browser

Redirect

Client Server

Please note the licensing requirements for using List & Label on a web server.

8.6 Hints for Usage in Multiple Threads
(Multithreading)

List & Label can be used from multiple threads. This enables the distribution of large
print jobs on multiple different processors / cores. Internally, this is used for the
designer preview or drill down reporting.

Miscellaneous Programming Topics

406

If you plan to use List & Label in a multithreaded environment, keep the following
issues in mind:

 Make sure that each List & Label job (resp. a component instance) is only
used within a single thread, i.e. the creation, usage and destruction of the
job/component needs to be done from the same thread. If you want to use
multiple printing threads, each of these threads needs to open and close it's
own job. Background: Windows GDI resources like window handles or
printer device contexts cannot be used across different threads.

 Make sure to open a job/create a component instance in your application
before starting the first print thread and do not close this job before all
threads are terminated. Typically, this will be done in your application's start-
up and shutdown code. Background: the first job creates a couple of helper
objects that need to be destroyed in the same job. Also, this can increase
the performance remarkably as it avoids steady loading and unloading of
DLLs.

 Threads that open the designer need to use the Single Threaded Apartment
(STA) concurrency model. This means you cannot use .NET worker threads
from the thread pool for this task, as they are initialized to use the Multi
Threaded Apartment (MTA) concurrency model. Background: List & Label
needs to call OleInitialize() for drag & drop support within the designer,
which requires the current apartment to be STA to succeed.

General Error Codes

407

9. Error Codes

9.1 General Error Codes
The return codes are provided below. They start with LL_ERR_, for example
BAD_JOBHANDLE means LL_ERR_BAD_JOBHANDLE. The values in brackets are the
decimal numbers that are written in the debug output.

In order to provide error handling within your application, the LlGetErrortext() API
returns a displayable, localized error description for each error code.

Value Meaning

BAD_JOBHANDLE (-1) A function is called with a job handle not
generated with LlJobOpen() or the job was
closed.

TASK_ACTIVE (-2) Only one Designer window can be open for each
application; you have tried to open a second
window (only if hWnd in LlDefineLayout() is
NULL).

BAD_OBJECTTYPE (-3) An invalid type was passed to a function which
requires the type of object as a parameter.
Valid types: LL_PROJECT_LABEL, LL_PROJECT_-
LIST, LL_PROJECT_CARD

PRINTING_JOB (-4) A print function was called, although no print job
had been started.

NO_BOX (-5) LlPrintSetBoxText() was called and the print job
was not opened with LlPrintWithBoxStart().

ALREADY_PRINTING (-6) The current operation cannot be performed
while a print job is open.

NOT_YET_PRINTING (-7) LlPrint[G|S]etOption[String](), LlPrintResetProject-
State(). The print job has not started yet.

NO_PROJECT (-10) LlPrint[WithBox]Start():There is no object with the
given object name. Identical to LL_ERR_NO_-
OBJECT

NO_PRINTER (-11) LlPrint[WithBox]Start(): Printer job could not be
started as no printer device could be opened.
List & Label requires a printer driver to be
installed.

PRINTING (-12) An error occurred during print. Most frequent
cause: print spooler is full. Other reasons: no
sufficient disk space, paper jam, general printer
failure.

Error Codes

408

EXPORTING (-13) An error occurred during print (e.g. no access
rights to the destination path, export file already
existing and write-protected,…)

NEEDS_VB (-14) This DLL version requires Visual Basic.

BAD_PRINTER (-15) LlPrintOptionsDialogTitle(): No printer available.

NO_PREVIEWMODE (-16) Preview functions: No preview mode is set.

NO_PREVIEWFILES (-17) LlPreviewDisplay(): No preview files found.

PARAMETER (-18) NULL pointer as a parameter is not allowed,
other parameter errors are also possible. Please
use the debug mode to determine the error.

BAD_EXPRESSION (-19) New expression mode: an expression in LlExpr-
Evaluate() could not be interpreted.

BAD_EXPRMODE (-20) Unknown expression mode in LlSetOption().

CFGNOTFOUND (-22) LlPrint[WithBox]Start(): Project file not found.

EXPRESSION (-23) LlPrint[WithBox]Start(),LlDefineLayout(): One of
the expressions used has an error. When
starting the Designer, these errors will be
displayed interactively. When printing, the errors
are logged to Debwin. When working with
LlExprEval() use LlExprError() to find the error.

CFGBADFILE (-24) LlPrint[WithBox]Start():Project file has the wrong
format or is defective.

BADOBJNAME (-25) LlPrintEnableObject(): The object name is not
correct.

UNKNOWNOBJECT (-27) LlPrintEnableObject(): No object exists with this
object name.

NO_TABLEOBJECT (-28) LlPrint[WithBox]Start(): No table available in the
list mode.

NO_OBJECT (-29) LlPrint[WithBox]Start(): The project has no
objects, and empty pages can be printed
another way!

NO_TEXTOBJECT (-30) LlPrintGetTextCharsPrinted(): No text object in
this project.

UNKNOWN (-31) LlPrintIsVariableUsed(), LlPrintIsFieldUsed(: The
given variable does not exist.
LlGetUsedIdentifiers(): The project contains no
information about variables and fields used
because it has not yet been saved with List &
Label 11 or newer.

BAD_MODE (-32) Field functions were used, although the project
is not a list project.

CFGBADMODE (-33) LlPrint[WithBox]Start(), LlDefineLayout(): The
expression mode of the project file is the new
mode, but the old mode is set (see
LlSetOption()).

General Error Codes

409

ONLYWITHONETABLE (-34) This error code can only be returned if - in the list
mode - the OneTable mode (LL_OPTION_
ONLYONETABLE) is chosen, but more than one
table is present when loading the project with
LlPrint[WithBox]Start()(See LlSetOption()).

UNKNOWNVARIABLE (-35) The variable given with LlGetVariableType() or
LlGetVariableContents() has not been defined.

UNKNOWNFIELD (-36) The field given with LlGetFieldType() or
LlGetFieldContents() has not been defined.

UNKNOWNSORTORDER (-37) The sorting order given by the ID for the
grouping functions has not been defined.

NOPRINTERCFG (-38) LlPrintCopyPrinterConfiguration(): File not found
or wrong format

SAVEPRINTERCFG (-39) LlPrintCopyPrinterConfiguration(): File write error
(network rights allow writing/creation, disk full?)

RESERVED (-40) Function not implemented yet

NOVALIDPAGES (-41) Storage file contains no valid pages.

NOTINHOSTPRINTERMODE (-42) This command cannot be called in
HOSTPRINTER mode (LlSetPrinterInPrinterFile(),
LlPrintCopyPrinterConfiguration())

NOTFINISHED(-43) One or more objects have not been completely
printed.

BUFFERTOOSMALL(-44) Ll[G|S]etOptionString(),LlPrint[G|S]etOptionString
(), ... A buffer passed to List & Label is not large
enough for the data that should be stored in it.
The data is not complete.

BADCODEPAGE (-45) LL_OPTION_CODEPAGE: The code page is
invalid (NLS not installed).

CANNOTCREATETEMPFILE(-46) A temporary file could not be created

NODESTINATION(-47) List & Label has no valid print medium (see
LL_OPTIONSTRING_EXPORTS_ALLOWED)

NOCHART(-48) LlPrintDeclareChartRow(): No chart object exists
in the project.

TOO_MANY_CONCURRENT_-
PRINTJOBS (-49)

Only in server/web server applications. The
count of current users is above the number of
licensed users.

BAD_WEBSERVER_LICENSE
 (-50)

Only in server/web server applications. The web
server license file (*.wsl) is invalid or damaged.

NO_WEBSERVER_LICENSE
(-51)

Only in server/web server applications. The
webserver license file (*.wsl) could not be found.

ERR_INVALIDDATE (-52) LlSystemTimeFromLocaleString(): invalid date
format has been used

DRAWINGNOTFOUND(-53) A required drawing file could not be found, see
also LL_OPTION_ERR_ON_FILENOTFOUND

Error Codes

410

ERR_NOUSERINTERACTION
(-54)

A call would require a user interaction, however
the application is running on a web server.

ERR_BADDATABASESTRUCTURE
(-55)

The database structure at design time and
runtime does not match.

ERR_UNKNOWNPROPERTY (-56) The property is not supported by the object.

ERR_CFGFOUND (-59) The selected project already exists or is write
protected.

ERR_SAVECFG (-60) Error saving the project file.

USER_ABORTED (-99) The user aborted the print.

BAD_DLLS (-100) The DLLs required by List & Label are not on the
required level.

NO_LANG_DLL (-101) The required language DLL was not found and a
CMLL20@@.LNG is not available.

NO_MEMORY (-102) Not enough free memory.

EXCEPTION (-104) An unhandled Exception happened inside a List
& Label call. List & Label might be unstable.

LL_ERR_LICENSEVIOLATION
(-105))

Returned if the action (LlDefineLayout()) is not
allowed with the current standard license, or if
the program passes wrong licensing information
in LL_OPTIONSTR_LICENSEINFO.

LL_WRN_TABLECHANGE (-996) The table name is changed in a hierarchical
layout. See also chapter "Printing Relational
Data".

LL_WRN_PRINTFINISHED(-997) Return value of LlRTFDisplay(): no more data to
print

LL_WRN_REPEAT_DATA (-998) This is just a hint: present data record did not fit
onto the page. This return value is required to
remind the programmer that he can, for
example, bring the number of pages up to date.
The record pointer may not be moved.

9.2 Additional Error Codes of the Storage API
The return codes of the StgAPI functions are provided below. They also start with
LL_ERR_. The values in brackets are the decimal numbers that are written in the
debug output.

Value Meaning

STG_NOSTORAGE (-1000) The file is not a List & Label preview file

STG_BADVERSION (-1001) The version number of the preview file is
incompatible

STG_READ (-1002) Error reading preview file

STG_WRITE (-1003) Error writing preview file

Additional Error Codes of the Storage API

411

STG_UNKNOWNSYSTEM (-1004) Unknown preview file format for the storage
system

STG_BADHANDLE (-1005) Bad parameter (invalid metafile handle)

STG_ENDOFLIST (-1006) LlStgsysGetFilename(): page not found

STG_BADJOB (-1007) LlStgsysxxx(): job not found

STG_ACCESSDENIED (-1008) Storage has been opened with ReadOnly flag
and cannot permit write access

STG_BADSTORAGE (-1009) Internal error in preview file, or empty file

STG_CANNOTGETMETAFILE
(-1010)

LlStgsysDrawPage(): metafile could not be
created (possibly defective preview file)

STG_OUTOFMEMORY (-1011) Not enough memory for current operation.

STG_SEND_FAILED (-1012) Error whild sending mail. Further information
can be found in the debug logfile.

STG_DOWNLOAD_PENDING
(-1013)

An action could not be compled because the
file to view could not be loaded completely.

STG_DOWNLOAD_FAILED
(-1014)

An action could not be compled because the
attempt to load the file failed.

STG_WRITE_FAILED (-1015) Write or access error when saving a file.

STG_UNEXPECTED (-1016) Unexpected error. Further information will be
displayed.

STG_CANNOTCREATEFILE
(-1017)

Write or access error when saving a file.

STG_INET_ERROR (-1019) Unexpected error. Further information will be
displayed.

WRN_STG_UNFAXED_PAGES
(-1100)

LlStgsysPrint() and LlStgsysStoragePrint() (only
while printing to MS FAX): some pages did
not include a phone number and could not
be faxed.

Debug Tool Debwin

412

10. Debug Tool Debwin

Debwin is a tool for manifold debug functions.

If the debug mode is switched on with LlSetDebug(), List & Label outputs status
information in the Debwin window. Alternatively, by Logging > Force Debug Mode
(from Debwin's main menu) the logging can be forced.

To get all available information we suggest to start Debwin before starting the
application.

As soon as your application is started, it will start sending debug messages to
Debwin.

Besides the error codes (see chapter "Error Codes"), you often get additional
information that helps to trace the reasons for unexpected program behavior. A
typical debug output looks like this:

CMLL20 : 09:05:01.266 00000ee4 [lldemo32.exe] LlSelectFileDlgTitleEx

(1,0x00010a3a,'(NULL)',0x00008001,0x0012F86C,129,0x00000000)

CMLL20 : 09:05:19.726 00000ee4 ->'c:\templates\article.lbl'=0

You can see the called module (CMLL20), timing information, the current thread ID,
the caller (lldemo32.exe), the called function including all parameters and – in the
following line – the return value of the call. A full debug log, which is also often
requested by our support team, contains many such output lines. If you don't get the
output, normally

 you haven't activated the debug mode with LlSetDebug() or

 you haven't activated logging in Debwin

We do not offer support for this additional tool.

It is purely a debugging tool!

System Requirements

413

11. Redistribution: Shipping the Application

For further information please refer to the file REDIST.TXT that can be found in your
List & Label installation menu under "Documentation" > "Other" > "Redistribution
Info".

11.1 System Requirements
Please refer to "System Requirements", as the redistribution modules of List & Label
have the same requirements.

11.2 64 Bit Modules
For Information on the 64 bit modules please refer to the file REDIST.TXT that can be
found in your List & Label start menu under "Documentation" –> "Other" ->
"Redistribution Info".

The following restrictions (current as of 10/2014) should be considered when using
the 64 bit modules:

 no project wizard available

 no direct digital signature support available (restriction from OpenLimit /secrypt)

11.3 The Standalone Viewer Application

11.3.1 Overview

LLVIEW20.EXE is a standalone application for viewing and printing the List & Label
preview files.

Once the viewer is registered, the file extension ".ll" is linked to this viewer, so
whenever a user double-clicks on files with this extension, the viewer is started.

11.3.2 Command Line Parameters

LLVIEW20 <file name>

Loads the file.

No URL can be given here.

LLVIEW20 /p <file name>

Prints the file (with a printer dialog).

Redistribution: Shipping the Application

414

LLVIEW20 /pt <file name> <printer name>

Prints the file using the given printer. If the printer name contains spaces,
enclose it in quotation marks.

11.3.3 Registration

Your setup program should call the viewer once with the "/regserver" option in order
to register it with the file extension "LL".

Unregister using "/unregserver".

11.3.4 Necessary Files

LLVIEW20.EXE needs CMLL20.DLL, CMDW20.DLL, CMCT20.DLL, CMBR20.DLL,
CMLS20.DLL and CMUT20.DLL. It also requires at least one language resource file
(e.g. CMLL2001.LNG). Depending on the direct export functionality required, you also
need:

• CMLL20XL.DLL if direct PDF export functionality should be supported

11.4 List & Label Files
List & Label saves the project definitions in single files. In addition to the basic
definition, some special settings such as target printer, printer configuration etc,
which can be made in the Designer, are saved in a special, so-called "P-File". A small
sketch of the form, which is displayed in the file open dialog, is saved to another
extra file (the so-called "V-File").

File extension: Form Printer-
Definition

Sketch for dialog

Label project .lbl .lbp .lbv

File card project .crd .crp .crv

List project .lst .lsp .lsv

These file extensions are only default values and can be changed using
LlSetFileExtensions() or LlSetOptionString().

The crucial file is the form definition file.

The "V-File" can be created at any time using LlCreateSketch().

In the printer configuration file ("P-File") are all export specific settings stored as well
as the printer specific settings. Usually this file is created by the end user – you
should not redistribute it with your application as the user typically will not have your
printer available.

If the "P-File" cannot be found, List & Label automatically chooses the Windows
default printer and - if the Designer is used - generates a P-file for it. The path where

List & Label Files

415

the P-File is searched for or generated can be specified with LlSetPrinterDefaultsDir(),
which may be relevant for network applications. The logical sequence of choosing
the printer is shown in the following graph:

Choose windows

default printer

P-File available?

Printer from P-File

available?

Yes

No

Choose printer from

P-File

Yes

When printing to preview, List & Label generates a file which contains all printed
pages as graphics. This file has the fixed extension .LL and may be viewed at any
time with the stand-alone application LLVIEW. The path where the LL-file is created
may be specified with LlPreviewSetTempPath().

Printing to Export will create files in a directory that can be defined by the host
application and/or the user. Please refer to the export module's documentation for
further details. A list of files created can be queried using
LL_OPTIONSTR_EXPORTFILELIST after the print has been finished.

Whenever a project file is saved, a backup file is created. The name of the backup
file's extension consists of a ~ and the project's extension (eg. "~lst" for the default
list project extension).

Redistribution: Shipping the Application

416

If the target does not support long file names, the extension will be cut off after the
third character (e.g. "~ls").

11.5 Other Settings
The following data are managed dependent on the main application (i.e. the program
name of the task):

• Language

• Dialog design

• Dialog positions

• Designer configurations (colors, fonts)

This means that the configurations set by you or your program regarding language
and dialog design or the dialog positions and the Designer configurations chosen by
the user are only valid for your application. In this way, your application does not
need to pay attention to whatever configurations are used in other applications.

These settings are stored in the registry at HKEY_CURRENT_USER/Soft-
ware/combit/CMBTLL/<application name>.

Overview

417

12. Update Information for Version 20

Update hints for older versions can be found as separate PDF document in the start
menu group "Documentations".

12.1 Overview

12.1.1 General/API

 New callback "LL_QUERY_EXPR2HOSTEXPRESSION"

 New API LlPrintDbGetCurrentTableFilter()

 New flag LL_ADDTABLEOPT_SUPPORTSADVANCEDFILTERING for
LlDbAddTable()

12.1.2 New features

 Parameterized subreports (in fields, table lines, crosstab cells, pie/funnel chart,
bar chart)

 Optional native database filtering support (see General/API)

 Multiple Report Containers (.NET only)

 Real-data preview: export to Word, XHTML and Excel possible if the host
supports the Drilldown callback.

 Office 2013 style for the Ribbon UI, general look & feel facelift.

 Format painter added for (most) objects and table cells. In ribbon and in 'old-
style' menu.

 OLE-Container can now use a formula for its contents.

 Checkbox object

 PPTX-Export

 "Objects" tool window now contains the information of the "Report Structure"
tool window.

 The position of pasted objects is now where the cursor is, not the original
position of the copied object.

 The standalone preview window now also has a zoom slider control.

 Static tables are now supported as sub-tables as well.

 Added new buttons to comment and uncomment selection in the function
wizard.

 Moving objects out of the workspace now scrolls the workspace to the
movement direction.

 Dimensions shown when an object is resized, background is faded away.

Update Information for Version 20

418

 ALT-key pressed when resizing: the width is rounded to the coordinate (mm/in)

 Added new context ribbon button for table column resize mode

 Editor font is now selectable and is serialized to the registry. "Show Text in
Layout Preview" is removed and always true now.

 When pasting a table line into a line def group that just contains one empty
(default) line definition, this empty definition is deleted on paste.

 LocNumber$ has an optional third parameter for the digits.

 Expandable regions can be collectively opened/closed in the preview

 Formula Wizard tweaks: more reliable autocomplete, Ctrl+Space triggers
autocomplete, better handling for autocomplete listbox

 New error code LL_ERR_NO_SUCH_INFORMATION if LlGetUsedIdentifiers[Ex] is
used for a file without such information

 D&D now also adds footer fields with automatic sums. Use CTRL as modifier to
only add a header.

 Progress meters are unified across exporting and printing.

 Added new button in Designer ribbon that enables to resize both vertically and
horizontally in one move.

 DWG (and so the drawings inside LL) do now support temporary download of
images

 XHTML supports rotated texts (standalone & in table cells). Vastly improved look
and feel of export result.

 SetVar has a new optional third parameter to decide if the set value should also
be output

12.2 Updating to List & Label 20

12.2.1 General

Please make sure to update your personal license key, since the key is version and
user specific.

As with any software update, we highly recommend that you check all project and
template files after updating. Improvements can sometimes mean that things are
done slightly differently, which might have an unexpected impact on your projects.

12.2.2 Updating .NET Projects

Generally, the only thing to do is to replace the reference to the
combit.ListLabel19.dll with a reference to the combit.ListLabel20.dll and to update
the namespace references. Additionally, the older components should be removed
from the toolbox and be replaced with the new components.

Updating to List & Label 20

419

12.2.3 What's New

 Support for native database filtering for many data providers.

 New databinding mode to support multiple report containers. Set the property
"NewDataBindingMode" to "false" to revert to the old behavior.

 New class AccessDataProvider

 New class Google BigQuery DataProvider

 New class InMemoryDataProvider

 XlsDataProvider supports Excel 2013 files

 DbConnectionDataProvider: 1:1 relations are now using JOIN statements for
SQL providers -> much better performance

 Improved support for In-Memory databases (SQLite), filtering, sorting and count
are properly supported.

12.2.4 Changes Compared to the Previous Version

 DbConnectionDataProvider has a new abstract member
SupportsAdvancedFiltering. If your provider uses standard SQL (Microsoft SQL),
you can return "true". Otherwise returning "false" is more secure to avoid SQL
syntax errors when filtering data. See the documentation in the .NET
component's online help.

 The SqlConnectionDataProvider class has been incorporated into the main
assembly, the separate provider assembly is no longer required nor available.

 LlGetOption now returns IntPtr instead of int. Please use an explicit type cast
where necessary.

12.2.5 Updating Projects Using the OCX (e.g. Visual Basic)

 Load the Visual-Basic project (*.vbp resp. *.mak) in a text editor. Replace the line

Object={2213E283-16BC-101D-AFD4-040224009C13}#19.0#0; CMLL19O.OCX

 with the following

Object={2213E283-16BC-101D-AFD4-040224009C14}#20.0#0; CMLL20O.OCX

 and the line

Module= CMLL19; CMLL19.BAS

 with the line

Module=CMLL20; CMLL20.BAS

 After saving your changes, load the form (*.frm) in a text editor, which contains
the List & Label OCX. Replace the line

Object="{2213E183-16BC-101D-AFD4-040224009C13}#19.0#0";"CMLL19O.OCX"

 with the following

Object="{2213E183-16BC-101D-AFD4-040224009C14}#20.0#0";"CMLL20O.OCX"

Update Information for Version 20

420

 If you wish to convert older List & Label versions, change the corresponding
entries analogously. If you use the UNICODE OCX control you need to adapt the
control GUID. The new GUID is {2213E280-16BC-101D-AFD4-040224009DF3}.

 You can now load your projects in Visual Basic. The source code must be
significantly adapted according to the original version.

 From VB 5 the .BAS declaration file is not necessary, because the List & Label
constants are contained in the OCX control.

 Please note that it's not possible to host differently versioned OCXes (e.g. OCX
version 19 and 20) within the same application.

12.2.6 Updating Projects Using the VCL (e.g. Delphi)

See the hints in the Delphi online help.

12.2.7 Updating Projects Using the API (e.g. C/C++)

Generally, the only thing to do is to replace the reference to the import library (e.g.
cmll19.lib) and declaration file (e.g. cmbtll19.h) with a reference to the files
corresponding to the current version.

Updating to List & Label 20

421

13. Help and Support

You will find many tips and tricks in our online Knowledge Base at
http://www.combit.net/en/support. The Knowledge Base is regularly updated and
complemented by new articles.

Information about our support concept can be found in the information material that
came with your product or at http://www.combit.net/en/support.

Requirements:

Please make sure you have checked the following points or you have the required
information before contacting us:

 Read the latest information available in the file readme_rel.pdf in the Service Pack
download area under http://support.combit.net.

 Also read the file Self_help.pdf in the List & Label Documentation directory or in
the respective Knowledge Base article "Create and Analyze a Log File".

 Use the online support submit form.

http://www.combit.net/en/support
http://www.combit.net/en/support
http://support.combit.net/

Index

422

14. Index

.

.NET 14

1

1:1 relations 106

1:n relations 103

A

Abort box 220, 228

Access 29

AdoDataProvider 26

Alias 266

API Reference 131

AutoDefineField 33

AutoDefineNewLine 33, 47

AutoDefineNewPage 33, 47

AutoDefineVariable 33

AutoDestination 23

AutoFileAlsoNew 24

AutoMasterMode 24, 31

AutoProjectFile 23

AutoProjectType 24, 34

AutoShowPrintOptions 24

AutoShowSelectFile 24

B

Barcode 33

Barcode size 258

Barcode Variables 89

Boolean Variables 87

C

C/C++ 15

C++ Builder 14

Callback 108

Callbacks 91, 92, 107, 111, 123

Cards 35

Charts 47

Handling 121

Programming 98

Code page 247

Component

Properties 21, 22, 23

Components 17

Concepts 25

Copies 35, 97, 211, 218, 222

Create log file 42

Create new project 24

Cross tables 47

Crosstabs 98

CSS 379

Currency symbol 251, 260

D

Data provider 25

Data Source 20

Data transfer 20

Data type

Barcode 33

Date 33

Drawing 33

HTML 33

Logic 33

Numeric 32

RTF 32

Text 32

Data types 31

Database independent 47

DataBinding 20

DataMember 31

DataProviderCollection 26

DataSource 17, 27

DataTable 26

DataView 26

DataViewManager 26

Date Variables 86

Index

423

DateTime 33

DB2 50

DbCommandSetDataProvider 27

Debug mode 240

Debugging 15, 42, 140, 240

Debwin 15, 412

Debwin3 42

Decimal char 260

Declaration files 15

Default export format 23

Default printer 181

Default project file 23

Delphi 14

Design 20

Designer 11

Direct printing 112

Edit 36

Extend 36, 51

DesignerFunction 52

Dialog styles 132

Digital Signature 391

DOC export 357, 376

DOM 40

Examples 127

Functions 124

Units 126

Drawing Variables 88

DrawObject 33

DrawPage 33

DrawTableField 33

DrawTableLine 33

Drilldown reports 115

E

E-mail export 394

Entity Framework 28

EntityCollection 28

Error Codes 407

Events 33

Examples 43

Excel export 333

Expandable Regions 120

Export 14, 22, 50, 329, 404

Digital Signature 391

Excel 333

Fax 375

Formats 22

HTML 338

JQM 347

MHTML 350

PDF 353

Picture 350

Restrict formats 51

RTF 360

Send via E-Mail 394

SVG 364

Text (CSV) 369

Text (Layout) 371

TTY 374

Without user interaction 50

Word 357, 376

XHTML/CSS 379

XML 386

XPS 390

ZIP 398

Export media 260

Export modules 261

Export options 271, 331

Extended MAPI 394

External$ 275

F

Fax export 375

Faxing 262

Fields 13, 24, 31, 34

File Extension 414

File extensions 241

File selection dialog 24

File types 21

FileExtensions 21

Filter 204, 226

FINALIZE event 118

First page 222

Font 248, 250, 260

Footer 208

Free content 99, 103

Index

424

G

Group header option 250

H

Help file 181

HTML 33, 88

HTML export 338

I

IDbCommand 27

IEnumerable<T> 28

IListSource 28

Import-Libraries 82

Instantiation 18

Integration 18

Interactive Sorting 121

Invoice 32

Invoice Merge 44

Issues 35

ITypedList 28

J

Java 15

Job Handle 326, 407

Job number 212

JQM export 347

L

Label 43

Labels 34

Landscape 35

Language 181

Languages 13

Last page 222

Licensing 19

LINQ 28

List 44

List<T> 28

ListLabel 17

ListLabelDocument 18

ListLabelPreviewControl 17

ListLabelRTFControl 17

ListLabelWebViewer 18

Lists 34

LL_ DESIGNEROPTSTR _...

PROJECTDESCRIPTION 161

PROJECTFILENAME 161

WORKSPACETITLE 161

LL_BARCODE_ 89

SSCC 89

LL_BOOLEAN 87

LL_CHAR_LOCK 85

LL_CHAR_NEWLINE 85

LL_CHAR_PHANTOMSPACE 85

LL_CMND_...

CHANGE_DCPROPERTIES_CREATE 281

CHANGE_DCPROPERTIES_DOC 281

CHANGE_DCPROPERTIES_PAGE 282

DRAW_USEROBJ 272

EDIT_USEROBJ 273

ENABLEMENU 275

EVALUATE 275

GETVIEWERBUTTONSTATE 276

HELP 277

HOSTPRINTER 258, 278

MODIFYMENU 159, 283

OBJECT 283

PAGE 285

PROJECT 286

SAVEFILENAME 287

SELECTMENU 288

TABLEFIELD 288

TABLELINE 290

VARHELPTEXT 291

LL_DATE 86, 87

LL_DATE_DELPHI 87

LL_DATE_DELPHI_1 87

LL_DATE_MS 87

LL_DATE_OLE 87

LL_DATE_VFOXPRO 87

LL_DRAWING 88

LL_DRAWING_HBITMAP 88

LL_DRAWING_HEMETA 88

Index

425

LL_DRAWING_HICON 88

LL_DRAWING_HMETA 88

LL_DRAWING_USEROBJ 89

LL_DRAWING_USEROBJ_DLG 89

LL_ERR_...

ALREADY_PRINTING (-6) 407

BAD_DLLS (-100) 410

BAD_EXPRESSION (-19) 408

BAD_EXPRMODE (-20) 408

BAD_JOBHANDLE (-1) 407

BAD_MODE (-32) 408

BAD_OBJECTTYPE (-3) 407

BAD_PRINTER (-15) 408

BAD_WEBSERVER_LICENSE (-50) 409

BADCODEPAGE (-45) 409

BADOBJNAME (-25) 408

BUFFERTOOSMALL 262

BUFFERTOOSMALL (-44) 409

CANNOTCREATETEMPFILE (-46) 409

CFGBADFILE (-24) 408

CFGBADMODE (-33) 408

CFGNOTFOUND (-22) 408

CONCURRENT_PRINTJOBS (-49) 409

DRAWINGNOTFOUND (-53) 409

EXCEPTION (-104) 410

EXPRESSION (-23) 408

LICENSEVIOLATION (-105) 410

NEEDS_VB (-14) 408

NO_BOX (-5) 407

NO_LANG_DLL (-101) 410

NO_MEMORY (-102) 410

NO_OBJECT (-29) 408

NO_PREVIEWFILES (-17) 408

NO_PREVIEWMODE (-16) 408

NO_PRINTER (-11) 407

NO_PROJECT (-10) 407

NO_TABLEOBJECT (-28) 408

NO_TEXTOBJECT (-30) 408

NO_WEBSERVER_LICENSE (-51) 409

NOCHART (-48) 409

NODESTINATION (-47) 409

NOPRINTERCFG (-38) 409

NOT_YET_PRINTING (-7) 407

NOTFINISHED (-43) 409

NOTINHOSTPRINTERMODE (-42) 409

NOVALIDPAGES (-41) 409

ONLY_ONE_JOB (-13) 408

ONLYWITHONETABLE (-34) 409

PARAMETER (-18) 408

PRINTING (-12) 407

PRINTING_JOB (-4) 407

SAVEPRINTERCFG (-39) 409

TASK_ACTIVE (-2) 407

UNKNOWN (-31) 408

UNKNOWNFIELD (-36) 409

UNKNOWNOBJECT (-27) 408

UNKNOWNSORTORDER (-37) 409

UNKNOWNVARIABLE (-35) 409

USER_ABORTED (-99) 410

LL_HTML 88

LL_INFO_METER 292

LL_INFO_PRINTJOBSUPERVISION 293

LL_NTFY_...

DESIGNERPRINTJOB 294

EXPRERROR 278, 296

FAILSFILTER 296

VIEWERBTNCLICKED 297

LL_NTFY_VIEWERDRILLDOWN 297

LL_NUMERIC 85

LL_NUMERIC_INTEGER 86

LL_NUMERIC_LOCALIZED 86

LL_OPTION_...

ADDVARSTOFIELDS 246

ALLOW_COMBINED_COLLECTING_OF_DATA
_FOR_COLLECTIONCONTROLS 246

ALLOW_LLX_EXPORTERS 246

CALC_SUMVARS_ON_PARTIAL_LINES247

CALCSUMVARSONINVISIBLELINES 247

CALLBACKMASK 247

CALLBACKPARAMETER 247

CODEPAGE 247

COMPRESSRTF 248

COMPRESSSTORAGE 248

CONVERTCRLF 248

DEFAULTDECSFORSTR 248

DEFDEFFONT 248, 260

DEFPRINTERINSTALLED 181

Index

426

DELAYTABLEHEADER 248

DESIGNEREXPORTPARAMETER 248

DESIGNERPREVIEWPARAMETER 249

DESIGNERPRINT_SINGLETHREADED 249

ERR_ON_FILENOTFOUND 249

ESC_CLOSES_PREVIEW 249

EXPRSEPREPRESENTATIONCODE 249

FONTPRECISION 249

FONTQUALITY 249

FORCE_DEFAULT_PRINTER_IN_PREVIEW250

FORCEFIRSTGROUPHEADER 250

FORCEFONTCHARSET 250

HELPAVAILABLE 181, 250

IMMEDIATELASTPAGE 250

INCLUDEFONTDESCENT 251

INCREMENTAL_PREVIEW 250

INTERCHARSPACING 251

LANGUAGE 181

LCID 251, 260, 266

LOCKNEXTCHARREPRESENTATIONCODE 251

MAXRTFVERSION 251

METRIC 251

NOAUTOPROPERTYCORRECTION 252

NOFAXVARS 252

NOFILEVERSIONUPGRADEWARNING 252

NOMAILVARS 252

NONOTABLECHECK 252

NOPARAMETERCHECK 82, 252

NOPRINTERPATHCHECK 253

NOPRINTJOBSUPERVISION 253

NOTIFICATIONMESSAGEHWND 253

NULL_IS_NONDESTRUCTIVE 253

PHANTOMSPACEREPR...CODE 254

PRINTERDCCACHE_TIMEOUT_SECONDS254

PRINTERDEVICEOPTIMIZATION 254

PROHIBIT_USERINTERACTION 254

PROJECTBACKUP 254

PRVRECT_HEIGHT 254

PRVRECT_LEFT 254

PRVRECT_TOP 254

PRVRECT_WIDTH 254

PRVZOOM_HEIGHT 254

PRVZOOM_LEFT 254

PRVZOOM_PERC 255

PRVZOOM_TOP 254

PRVZOOM_WIDTH 254

REALTIME 255

RESETPROJECTSTATE_FORCES_NEW_DC
 255

RESETPROJECTSTATE_FORCES_NEW_PRINT
JOB 255

RETREPRESENTATIONCODE 255

RIBBON_DEFAULT_ENABLEDSTATE 255

RTFHEIGHTSCALINGPERCENTAGE 255

SCALABLEFONTSONLY 256

SETCREATIONINFO 256

SHOWPREDEFVARS 256

SKETCH_COLORDEPTH 256

SKIPRETURNATENDOFRTF 256

SORTVARIABLES 256

SPACEOPTIMIZATION 256

SUPERVISOR 257

SUPPORT_HUGESTORAGEFS 257

SUPPORTS_PRNOPTSTR_EXPORT 257

TABLE_COLORING 257

TABREPRESENTATIONCODE 257

TABSTOPS 257

UISTYLE 258

UNITS 258

USE_JPEG_OPTIMIZATION 258

USEBARCODESIZES 258

USECHARTFIELDS 258

USEHOSTPRINTER 258

VARSCASESENSITIVE 258

XLATVARNAMES 259

LL_OPTIONSTR_...

CARD_PRJDESCR 260

CARD_PRJEXT 260

CARD_PRNEXT 260

CARD_PRVEXT 260

CURRENCY 260

DECIMAL 260

DEFDEFFONT 248, 260

EXPORTEDFILELIST 262

EXPORTS_ALLOWED 260

EXPORTS_ALLOWED_IN_PREVIEW 261

EXPORTS_AVAILABLE 261

Index

427

FAX 262

HELPFILENAME 262

LABEL_PRJDESCR 260, 263

LABEL_PRJEXT 263

LABEL_PRNEXT 263

LABEL_PRVEXT 263

LICENSINGINFO 263

LIST_PRJDESCR 260, 263

LIST_PRJEXT 263

LIST_PRNEXT 263

LIST_PRVEXT 263

LLFILEDESCR 263

LLXPATHLIST 246, 261, 264

MAILTO 264

MAILTO_BCC 264

MAILTO_CC 264

MAILTO_SUBJECT 264

NULLVALUE 265

PREVIEWFILENAME 265

PRINTERALIASLIST 265

PROJECTPASSWORD 265

SAVEAS_PATH 266

SHORTDATEFORMAT 266

THOUSAND 266

VARALIAS 266

LL_PRINT_FILE 92

LL_PRINT_NORMAL 92

LL_PRINT_PREVIEW 92

LL_PRINT_USERSELECT 92

LL_PRNOPT_...

COPIES 222

COPIES_SUPPORTED 211

DEFPRINTERINSTALLED 212

FIRSTPAGE 222

JOBID 212

JOBPAGES 222

LASTPAGE 222

OFFSET 222

PAGE 222

PRINTDLG_ONLYPRINTERCOPIES 222

PRINTORDER 212

UNIT 212

UNITS 223

USE2PASS 212

LL_PRNOPTSTR_...

EXPORT 223

ISSUERANGES 223

PAGERANGES 223

PRINTDST_FILENAME 223

PRINTJOBNAME 223

LL_PROJECT_CARD 93

LL_PROJECT_LABEL 93

LL_PROJECT_LIST 94

LL_QUERY_ EXPR2HOSTEXPRESSION 300

LL_QUERY_DESIGNERACTIONSTATE 299

LL_RTF 87

LL_TEXT 85

LL_WRN_...

REPEAT_DATA (-998) 410

LL_WRN_...

PRINTFINISHED (-997) 410

TABLECHANGE (-105) 410

LlAddCtlSupport 131

LlAssociatePreviewControl 131

LlCreateSketch 132

LlDbAddTable 99, 133

LlDbAddTableEx 134

LlDbAddTableRelation 99, 135

LlDbAddTableRelationEx 136

LlDbAddTableSortOrder 99, 137

LlDbAddTableSortOrderEx 138

LlDbSetMasterTable 139

LlDebugOutput 140

LlDefineChartFieldExt 141

LlDefineChartFieldStart 168, 215

LlDefineField 93, 142

LlDefineFieldExt 143

LlDefineFieldExtHandle 144, 167

LlDefineFieldStart 146, 167, 169, 170, 216

LlDefineLayout 91, 108, 147, 253, 408

LlDefineSumVariable 148

LlDefineVariable 93, 149

LlDefineVariableExt 150

LlDefineVariableExtHandle 151, 167

LlDefineVariableStart 152, 167, 169, 170

LlDesignerAddAction 153

Index

428

LlDesignerFileOpen 155

LlDesignerFileSave 156

LlDesignerGetOptionString 157

LlDesignerInvokeAction 157

LlDesignerProhibitAction 91, 158

LlDesignerProhibitEditingObject 159

LlDesignerProhibitFunction 160

LlDesignerRefreshWorkspace 160

LlDesignerSetOptionString 157, 161

LlDlgEditLineEx 162

LlDomCreateSubobject 124, 162

LlDomDeleteSubobject 125, 163

LlDomGetObject 124, 163

LlDomGetProject 164

LlDomGetProperty 126, 164

LlDomGetSubobject 124, 165

LlDomGetSubobjectCount 124, 166

LlDomSetProperty 125, 166

LlEnum...

GetEntry 167

GetFirstChartField 168

GetFirstField 168

GetFirstVar 169

GetNextEntry 169

LlExportOption 23

LlExprError 170, 296

LlExprEvaluate 171, 266, 408

LlExprFree 172

LlExprGetUsedVars 172

LlExprGetUsedVarsEx 173

LlExprParse 174

LlExprType 175

LlGetChartFieldContents 176

LlGetDefaultPrinter 176

LlGetDefaultProjectParameter 177, 401

LlGetErrortext 178

LlGetFieldContents 178

LlGetFieldType 179, 187

LlGetNotificationMessage 110, 179

LlGetOption 180

LlGetOptionString 181, 264

LlGetPrinterFromPrinterFile 182

LlGetProjectParameter 183, 401

LlGetSumVariableContents 184

LlGetUsedIdentifiers 146, 185, 216

LlGetUsedIdentifiersEx 185

LlGetUserVariableContents 186

LlGetVariableContents 187

LlGetVariableType 187, 188

LlGetVersion 188

LlJobClose 189, 190

LlJobOpen 84, 90, 181, 189, 246

LlJobOpenLCID 84, 90, 181, 191

LlJobStateRestore 191

LlJobStateSave 192

LlLocAddDesignLCID 192

LlLocAddDictionaryEntry 193

LlPreviewDeleteFiles 195

LlPreviewDisplay 195, 408

LlPreviewDisplayEx 196

LlPreviewSetTempPath 197

LlPrint 197, 226

LlPrint[WithBox]Start 146, 153

LlPrintAbort 198

LlPrintCopyPrinterConfiguration 199

LlPrintDbGetCurrentRelation 103

LlPrintDbGetCurrentTable 101, 201

LlPrintDbGetCurrentTableFilter 201

LlPrintDbGetCurrentTableRelation 202

LlPrintDbGetCurrentTableSortOrder 102, 202

LlPrintDbGetRootTableCount 200

LlPrintDeclareChartRow 203

LlPrintDidMatchFilter 204

LlPrintEnableObject 408

LlPrintEnd 205, 262

LlPrinterSetup 206

LlPrintFields 207, 226, 248

LlPrintFieldsEnd 208

LlPrintGetChartObjectCount 209

LlPrintGetCurrentPage 209

LlPrintGetFilterExpression 210

LlPrintGetItemsPerPage 210

LlPrintGetOption 210, 211

LlPrintGetOptionString 213

LlPrintGetPrinterInfo 213

LlPrintGetProjectParameter 214, 401

Index

429

LlPrintGetTextCharsPrinted 408

LlPrintIsChartFieldUsed 215

LlPrintIsFieldUsed 146, 216, 408

LlPrintIsVariableUsed 153, 217, 408

LlPrintOptionsDialog 207, 217, 220

LlPrintOptionsDialogTitle 218

LlPrintResetProjectState 219

LlPrintSelectOffsetEx 220

LlPrintSetBoxText 220, 226, 407

LlPrintSetOption 221

LlPrintSetOptionString 223

LlPrintSetProjectParameter 224, 401

LlPrintStart 225, 409

LlPrintUpdateBox 226

LlPrintVariableStart 217

LlPrintWillMatchFilter 226

LlPrintWithBoxStart 227

LlProjectClose 229

LlProjectOpen 230

LlProjectSave 231

LlRTFCopyToClipboard 232

LlRTFCreateObject 232

LlRTFDeleteObject 233

LlRTFDisplay 233

LlRTFEditObject 234

LlRTFEditorInvokeAction 235

LlRTFEditorProhibitAction 236

LlRTFGetText 236

LlRTFGetTextLength 237

LlRTFSetText 238

LlSelectFileDlgTitleEx 96, 238

LlSetDebug 82, 239

LlSetDefaultProjectParameter 241, 401

LlSetFileExtensions 241

LlSetNotificationCallback 108, 243

LlSetNotificationCallbackExt 244

LlSetNotificationMessage 110, 245

LlSetOption 92, 96, 180, 181, 246, 408, 409

LlSetOptionString 96, 181, 242, 259

LlSetPrinterDefaultsDir 267

LlSetPrinterInPrinterFile 268

LlSetPrinterToDefault 269

LLStaticTable 99, 103

LlStgsys...

Append 303, 322

Convert 304

DeleteFiles 305

DestroyMetafile 306, 312

DrawPage 306

GetAPIVersion 307

GetFilename 308

GetFileVersion 309

GetJobCount 309

GetJobOptionStringEx 310

GetJobOptionValue 310

GetLastError 311

GetPageCount 312

GetPageMetafile 311, 312

GetPageOptionString 313

GetPageOptionValue 312, 315

GetPagePrinter 316

Print 317

SetJob 318

SetJobOptionStringEx 319

SetPageOptionString 314, 320, 322

StorageClose 321

StorageConvert 321

StorageOpen 322

StoragePrint 322

LLVIEW??.EXE 413

LlViewerProhibitAction 270

LlXGetParameter 270

LlXSetParameter 271

LoadFinished 64

Localization 266

Lock functions 36

Lock menu items 36

Lock objects 36

Locked objects 257

LS_OPTION_...

BOXTYPE 311

COPIES 315

CREATION 314

CREATIONAPP 314

CREATIONDLL 314

CREATIONUSER 314

Index

430

ISSUEINDEX 316

JOBNAME 314

PAGENUMBER 315

PHYSPAGE 315

PRINTERCOUNT 311

PRN_INDEX 316

PRN_ORIENTATION 315

PRN_PIXELS_X 315

PRN_PIXELS_Y 315

PRN_PIXELSOFFSET_X 315

PRN_PIXELSOFFSET_Y 315

PRN_PIXELSPERINCH_X 316

PRN_PIXELSPERINCH_Y 316

PRN_PIXELSPHYSICAL_X 316

PRN_PIXELSPHYSICAL_Y 316

PROJECTNAME 314

UNITS 311

USER 314

LsMailConfigurationDialog 324, 395

LsMailGetOptionString 325

LsMailJobClose 325

LsMailJobOpen 326

LsMailSendFile 327

LsMailSetOptionString 327

LsSetDebug 328

M

MAPI 394

Menu 177, 270

Menu ID 277

Menu items 158

MENUID.TXT 65, 158, 235, 236, 277

Messages 108

Meter dialog 220

MHTML export 350

Multi Mime HTML 350

Multiple print 32

Multiple tables 205

Multithreading 405

MySQL 50

N

NULL-values 400

Numerical Variables 85

O

Object model 40

ObjectDataProvider 28

ObjectReportContainer 40

Objects 37, 40

Barcode 38

HTML 39

Picture 38

RTF-Text 38

Text 37

ObjectText 40

OCX component

data transfer 58

Designer functions 61

Designer objects 62

Events 59

Integration 57

Language selection 59

Preview control 60

Preview files 60

print-and-design methods 57

OCX Event

’BtnPress’ 66

’LoadFinished’ 67

’PageChanged’ 67

OCX Method

’GetOptionString’ 66

’GotoLast’ 65

’GotoNext’ 65

’GotoPrev’ 65

’PrintAllPages’ 66

’PrintCurrentPage’ 66

’PrintPage’ 66

’RefreshToolbar’ 66

’SaveAs’ 66

’SendTo’ 66

’SetOptionString’ 66

’SetZoom’ 66

Index

431

’ZoomReset’ 65

’ZoomRevert’ 65

’ZoomTimes2’ 65

OCX Properties

’AsyncDownload’ 64

’BackColor’ 64

’CanClose’ 65

’CurrentPage’ 64

’Enabled’ 64

’FileURL’ 64

’Pages’ 64

’SaveAsFilePath’ 65

’ShowThumbnails’ 65

’ToolbarButtons’ 64

’ToolbarEnabled’ 64

’Version’ 65

OCX Viewer Control 63, 68

OleDbConnectionDataProvider 29

Oracle 50

OracleConnection 30

OracleConnectionDataProvider 30

P

Page break 97, 198

Page number 222

Parameter82, 157, 162, 165, 167, 170, 172, 173,
176, 177, 178, 179, 182, 183, 184, 185, 186,
187, 202, 203, 210, 213, 214, 215, 237, 239,
271, 408

Pass additional data 33

PDF export 353

P-file 21

Picture 33

Picture export 350

Placeholders 45

Portrait 35

PostgreSQL 50

Preview 12, 53, 195

Preview API 302, 303

Preview files 302

Convert 53

Join 53

PreviewFile 53

Print 21

Network 55

Print Engine 12

Print files 302

Print options 219, 221

Print options dialog 24

Printer configuration 199, 414

Printer device 225

Printer driver 25

Printer selection window 206

Printer settings 21

Printers 35

Printing

Job 83, 84

Proceeding 92

Progress 15

ProhibitedActions 36

ProhibitedFunctions 36

Project files

In database 55

Project includes 45

Project parameters 401

Project type 24

Project types 13, 34

Cards 35

Labels 34

Lists 34

ProjectCard 40

ProjectLabel 40

ProjectList 40

Property ‘Pages’ 67

R

ReadOnlyObjects 36

Real data preview 195

Regions 35, 40

Report Container 39, 98

Report Parameter 119

Return Value 83

Rounding 400

RTF 87

RTF control 248, 251

RTF Editor, calling 232

Index

432

RTF export 360

S

Sending e-Mail 54

Settings 416

SMTP 394

Space Optimization 256

Speed Optimization 97

SqlConnection 30

SqlConnectionDataProvider 30

SQLite 50

START-Event 117

Sub reports 46

SubItemTable 40

Sum variable 148, 184, 247, 400

Suppress data 49

SVG export 364

System requirements 9, 413

T

Text (CSV) export 369

Text (Layout) export 371

Text blocks 31

Text Variables 85

Thousands separator 266

Threading 405

Translate$ 194

Translation 266

TTY 374

U

Unbound data 47

Update 418

Changes 419

User Drawn Object 89

User information 256

User variable 186

V

VariableHelpText 34

Variables 13, 24, 31, 34, 145

VCL 14

VCL component

Data binding 70

Data transfer 74

Designer objects 78

Events 75

Language selection 75

Preview control 75

Preview files 75

Print-and-design methods 73

Relational links 71

VDF 15

Viewer Application 413

Viewer OCX

'AsyncDownload' 68, 69

Viewer OCX Control 63, 68

Visual Basic 14

Visual C++ 15

Visual DataFlex 15

Visual dBase 15

Visual FoxPro 15

Visual Studio 16

VLC component

Integration 70

W

Web Reporting 24, 405

Word export 357, 376

X

Xbase++ 15

XHTML export 379

XLS export 333

XMAPI 394

XML 30

XML export 386

XmlDataProvider 30

XP Look & Feel 258

XPS export 390

Index

433

Z ZIP export 398

Zoom factor 255

	1. Introduction
	1.1 Before Installation
	1.1.1 System Requirements
	1.1.2 Licensing

	1.2 After Installation
	1.2.1 Start Menu
	1.2.2 Designer Quick Start via Sample Application
	1.2.3 Programming Samples
	1.2.4 Documentation

	1.3 Important Concepts
	1.3.1 Basic Principles
	Creating Report Templates in the Designer
	Print or Export: Generating Reports
	Displaying Reports

	1.3.2 Project Types
	Labels and File Cards
	Lists

	1.3.3 Variables and Fields
	1.3.4 Available User Interface Languages

	1.4 Getting Started With Programming
	1.4.1 Overview
	1.4.2 Integration With .NET
	1.4.3 Integration With Visual Basic
	1.4.4 Integration With Delphi
	1.4.5 Integration With C++ Builder
	1.4.6 Integration With C/C++
	1.4.7 Integration With Java
	1.4.8 Integration With Other Programming Languages
	1.4.9 Hints on Variable and Field Names
	1.4.10 Debugging Support

	2. Programming With .NET
	2.1 Introduction
	2.1.1 Integration in Visual Studio
	2.1.2 Components

	2.3 First Steps
	2.3.1 Integrate List & Label
	2.3.2 License Component
	2.3.3 Binding to a Data Source
	2.3.4 Design
	2.3.5 Print
	2.3.6 Export
	2.3.7 Important Properties of the Component
	2.3.8 Web Reporting

	2.4 Other Important Concepts
	2.4.1 Data Providers
	AdoDataProvider
	DataProviderCollection
	DataSource
	DbCommandSetDataProvider
	ObjectDataProvider
	OleDbConnectionDataProvider
	OracleConnectionDataProvider
	SqlConnectionDataProvider
	XmlDataProvider

	2.4.2 Variables, Fields and Data Types
	Variables and Fields With Databinding
	Data Types

	2.4.3 Events
	2.4.4 Project Types
	Lists
	Labels
	Cards

	2.4.5 Varying Printers and Printing Copies
	Regions
	Issues and Copies

	2.4.6 Edit and Extend the Designer
	Menu Items, Objects and Functions
	Extend Designer

	2.4.7 Objects in the Designer
	Text
	Picture
	Barcode
	RTF Text
	HTML

	2.4.8 Report Container
	2.4.9 Object Model (DOM)
	2.4.10 List & Label in WPF Applications
	2.4.11 Error Handling With Exceptions
	2.4.12 Debugging
	Create Log File

	2.5 Examples
	2.5.1 Simple Label
	2.5.2 Simple List
	2.5.3 Invoice Merge
	2.5.4 Print Card With Simple Placeholders
	2.5.5 Sub Reports
	2.5.6 Charts
	2.5.7 Cross Tables
	2.5.8 Database Independent Contents
	Pass Additional Contents
	Suppress Data From a Data Source
	Custom Data Structures / Contents

	2.5.9 Export
	Export Without User Interaction
	Restriction of Export Formats

	2.5.10 Extend Designer by Custom Function
	2.5.11 Join and Convert Preview Files
	2.5.12 Sending E-Mail
	2.5.13 Store Project Files in a Database
	2.5.14 Network Printing

	3. Programming With the OCX Component
	3.1 Integration of the Component
	3.2 Simple Print and Design Methods
	3.2.1 Working Principle
	3.2.2 Using the UserData Parameter

	3.3 Transferring Unbound Variables and Fields
	3.3.1 Pictures
	3.3.2 Barcodes

	3.4 Language Selection
	3.5 Working With Events
	3.6 Displaying a Preview File
	3.7 Working With Preview Files
	3.7.1 Opening a Preview File
	3.7.2 Merging Multiple Preview Files
	3.7.3 Debugging

	3.8 Extending the Designer
	3.8.1 Using the Formula Wizard to Add Your Own Functions
	3.8.2 Adding Your Own Objects to the Designer

	3.9 The Viewer OCX Control
	3.9.1 Overview
	3.9.2 Registration
	3.9.3 Properties
	3.9.4 Methods
	3.9.5 Events
	BtnPress
	PageChanged
	LoadFinished

	3.9.6 Visual C++ Hint
	3.9.7 CAB Files Packaging
	3.9.8 Inserting the OCX Into Your Internet Page

	3.10 The Designer OCX Control
	3.10.1 Overview
	3.10.2 Registration
	3.10.3 Properties
	3.10.4 Methods
	3.10.5 CAB Files Packaging
	3.10.6 Inserting the OCX Into Your Internet Page

	4. Programming With the VCL Component
	4.1 Integration of the Component
	4.2 Data Binding
	4.2.1 Binding List & Label to a Data Source
	4.2.2 Working With Master Detail Records
	4.2.3 Additional Options for Data Binding

	4.3 Simple Print and Design Methods
	4.3.1 Working Principle
	4.3.2 Using the UserData Parameter

	4.4 Transferring Unbound Variables and Fields
	4.4.1 Pictures
	4.4.2 Barcodes

	4.5 Language Selection
	4.6 Working With Events
	4.7 Displaying a Preview File
	4.8 Working With Preview Files
	4.8.1 Opening a Preview File
	4.8.2 Merging Multiple Preview Files
	4.8.3 Debugging

	4.9 Extending the Designer
	4.9.1 Using the Formula Wizard to Add Your Own Functions
	4.9.2 Adding Your Own Objects to the Designer

	5. Programming Using the API
	5.1 Programming Interface
	5.1.1 Dynamic Link Libraries
	Basics
	Usage of a DLL
	Linking With Import Libraries
	Important Remarks on the Function Parameters of DLLs

	5.1.2 General Notes About the Return Value

	5.2 Programming Basics
	5.2.1 Database Independent Concept
	5.2.2 The List & Label Job
	5.2.3 Variables, Fields and Data Types
	Text
	Numeric
	Date
	Boolean
	RTF Formatted Text
	HTML Formatted Text
	Drawing
	Barcode
	User Object

	5.3 Invoking the Designer
	5.3.1 Basic Scheme
	5.3.2 Annotations

	5.4 The Print Process
	5.4.1 Supplying Data
	5.4.2 Real Data Preview or Print?
	5.4.3 Basic Procedure
	Printing Labels and File Cards
	Printing Lists

	5.4.4 Annotations
	Starting Print: Reading the Project File
	List Projects: Important Things to Note
	Copies
	Speed Optimization

	5.5 Printing Relational Data
	5.5.1 API Functions Needed
	5.5.2 Calling the Designer
	5.5.3 Controlling the Print Engine
	Multiple Independent Tables on the Same Level
	Simple 1:n Relations
	The Recursive Print Loop
	Supplying Master Data as Variables

	5.5.4 Handling 1:1 Relations
	1:1 Relations Without a Key Field Definition
	1:1 Relation With Key Field Definition
	Performance Hints

	5.6 Callbacks and Notifications
	5.6.1 Overview
	5.6.2 User Objects
	5.6.3 Definition of a Callback Routine
	5.6.4 Passing Data to the Callback Routine
	5.6.5 Passing Data by Messages
	5.6.6 Further Hints

	5.7 Advanced Programming
	5.7.1 Direct Print and Export From the Designer
	Introduction
	Preparation
	Tasks
	Start Event (..._PREVIEW_START/..._EXPORT_START)
	Abort Event (..._PREVIEW_ABORT/..._EXPORT_ABORT)
	Finalize Event (..._PREVIEW_FINALIZE/..._EXPORT_FINALIZE)
	Status Query Event (..._PREVIEW_QUEST_JOBSTATE/..._EXPORT_ QUEST_JOBSTATE)

	Activity

	5.7.2 Drilldown Reports in Preview
	Preparations
	Tasks
	5.7.2.1.1 Start Event (LL_DRILLDOWN_START)
	5.7.2.1.2 Finalize Event (LL_DRILLDOWN_FINALIZE)
	5.7.2.1.3 Preparing the Data Source

	5.7.3 Supporting the Report Parameter Pane in Preview
	Preparations

	5.7.4 Supporting Expandable Regions in Preview
	Preparations

	5.7.5 Supporting Interactive Sorting in Preview
	Preparations

	5.7.6 Handling Chart and Crosstab Objects
	Standard Mode (Default)
	Enhanced Mode

	5.8 Using the DOM-API (Professional/Enterprise Edition Only)
	5.8.1 Basic Principles
	DOM Functions
	LlDomGetObject
	LlDomGetSubobjectCount
	LlDomGetSubobject
	LlDomCreateSubobject
	LlDomDeleteSubobject
	LlDomSetProperty
	LlDomGetProperty

	Units

	5.8.2 Examples
	Creating a Text Object
	Creating a Table
	Setting the Project Parameters

	6. API Reference
	6.1 Function Reference
	LlAddCtlSupport
	LlAssociatePreviewControl
	LlCreateSketch
	LlDbAddTable
	LlDbAddTableEx
	LlDbAddTableRelation
	LlDbAddTableRelationEx
	LlDbAddTableSortOrder
	LlDbAddTableSortOrderEx
	LlDbSetMasterTable
	LlDebugOutput
	LlDefineChartFieldExt
	LlDefineField
	LlDefineFieldExt
	LlDefineFieldExtHandle
	LlDefineFieldStart
	LlDefineLayout
	LlDefineSumVariable
	LlDefineVariable
	LlDefineVariableExt
	LlDefineVariableExtHandle
	LlDefineVariableStart
	LlDesignerAddAction
	LlDesignerFileOpen
	LlDesignerFileSave
	LlDesignerGetOptionString
	LlDesignerInvokeAction
	LlDesignerProhibitAction
	LlDesignerProhibitEditingObject
	LlDesignerProhibitFunction
	LlDesignerRefreshWorkspace
	LlDesignerSetOptionString
	LlDlgEditLineEx
	LlDomCreateSubobject
	LlDomDeleteSubobject
	LlDomGetObject
	LlDomGetProject
	LlDomGetProperty
	LlDomGetSubobject
	LlDomGetSubobjectCount
	LlDomSetProperty
	LlEnumGetEntry
	LlEnumGetFirstChartField
	LlEnumGetFirstField
	LlEnumGetFirstVar
	LlEnumGetNextEntry
	LlExprError
	LlExprEvaluate
	LlExprFree
	LlExprGetUsedVars
	LlExprGetUsedVarsEx
	LlExprParse
	LlExprType
	LlGetChartFieldContents
	LlGetDefaultPrinter
	LlGetDefaultProjectParameter
	LlGetErrortext
	LlGetFieldContents
	LlGetFieldType
	LlGetNotificationMessage
	LlGetOption
	LlGetOptionString
	LlGetPrinterFromPrinterFile
	LlGetProjectParameter
	LlGetSumVariableContents
	LlGetUsedIdentifiers
	LlGetUsedIdentifiersEx
	LlGetUserVariableContents
	LlGetVariableContents
	LlGetVariableType
	LlGetVersion
	LlJobClose
	LlJobOpen
	LlJobOpenLCID
	LlJobStateRestore
	LlJobStateSave
	LlLocAddDesignLCID
	LlLocAddDictionaryEntry
	LlPreviewDeleteFiles
	LlPreviewDisplay
	LlPreviewDisplayEx
	LlPreviewSetTempPath
	LlPrint
	LlPrintAbort
	LlPrintCopyPrinterConfiguration
	LlPrintDbGetRootTableCount
	LlPrintDbGetCurrentTable
	LlPrintDbGetCurrentTableFilter
	LlPrintDbGetCurrentTableRelation
	LlPrintDbGetCurrentTableSortOrder
	LlPrintDeclareChartRow
	LlPrintDidMatchFilter
	LlPrintEnableObject{XE LlPrintEnableObject“}
	LlPrintEnd
	LlPrinterSetup
	LlPrintFields
	LlPrintFieldsEnd
	LlPrintGetChartObjectCount
	LlPrintGetCurrentPage
	LlPrintGetFilterExpression
	LlPrintGetItemsPerPage
	LlPrintGetOption
	LlPrintGetOptionString
	LlPrintGetPrinterInfo
	LlPrintGetProjectParameter
	LlPrintIsChartFieldUsed
	LlPrintIsFieldUsed
	LlPrintIsVariableUsed
	LlPrintOptionsDialog
	LlPrintOptionsDialogTitle
	LlPrintResetProjectState
	LlPrintSelectOffsetEx
	LlPrintSetBoxText
	LlPrintSetOption
	LlPrintSetOptionString
	LlPrintSetProjectParameter
	LlPrintStart
	LlPrintUpdateBox
	LlPrintWillMatchFilter
	LlPrintWithBoxStart
	LlProjectClose
	LlProjectOpen
	LlProjectSave
	LlRTFCopyToClipboard
	LlRTFCreateObject
	LlRTFDeleteObject
	LlRTFDisplay
	LlRTFEditObject
	LlRTFEditorInvokeAction
	LlRTFEditorProhibitAction
	LlRTFGetText
	LlRTFGetTextLength
	LlRTFSetText
	LlSelectFileDlgTitleEx
	LlSetDebug
	LlSetDefaultProjectParameter
	LlSetFileExtensions
	LlSetNotificationCallback
	LlSetNotificationCallbackExt
	LlSetNotificationMessage
	LlSetOption
	LlSetOptionString
	LlSetPrinterDefaultsDir
	LlSetPrinterInPrinterFile
	LlSetPrinterToDefault
	LlViewerProhibitAction
	LlXGetParameter
	LlXSetParameter

	6.2 Callback Reference
	LL_CMND_DRAW_USEROBJ
	LL_CMND_EDIT_USEROBJ
	LL_CMND_ENABLEMENU
	LL_CMND_EVALUATE
	LL_CMND_GETVIEWERBUTTONSTATE
	LL_CMND_HELP
	LL_NTFY_EXPRERROR
	LL_CMND_HOSTPRINTER
	LL_CMND_CHANGE_DCPROPERTIES_CREATE
	LL_CMND_CHANGE_DCPROPERTIES_DOC
	LL_CMND_CHANGE_DCPROPERTIES_PAGE
	LL_CMND_MODIFYMENU
	LL_CMND_OBJECT
	LL_CMND_PAGE
	LL_CMND_PROJECT
	LL_CMND_SAVEFILENAME
	LL_CMND_SELECTMENU
	LL_CMND_TABLEFIELD
	LL_CMND_TABLELINE
	LL_CMND_VARHELPTEXT
	LL_INFO_METER
	LL_INFO_PRINTJOBSUPERVISION
	LL_NTFY_DESIGNERPRINTJOB
	LL_NTFY_EXPRERROR
	LL_NTFY_FAILSFILTER
	LL_NTFY_VIEWERBTNCLICKED
	LL_NTFY_VIEWERDRILLDOWN
	LL_QUERY_DESIGNERACTIONSTATE
	LL_QUERY_EXPR2HOSTEXPRESSION

	6.3 Managing Preview Files
	6.3.1 Overview
	6.3.2 The Preview API
	LlStgsysAppend
	LlStgsysConvert
	LlStgsysDeleteFiles
	LlStgsysDestroyMetafile
	LlStgsysDrawPage
	LlStgsysGetAPIVersion
	LlStgsysGetFilename
	LlStgsysGetFileVersion
	LlStgsysGetJobCount
	LlStgsysGetJobOptionStringEx
	LlStgsysGetJobOptionValue
	LlStgsysGetLastError
	LlStgsysGetPageCount
	LlStgsysGetPageMetafile
	LlStgsysGetPageOptionString
	LlStgsysGetPageOptionValue
	LlStgsysGetPagePrinter
	LlStgsysPrint
	LlStgsysSetJob
	LlStgsysSetJobOptionStringEx
	LlStgsysSetPageOptionString
	LlStgsysStorageClose
	LlStgsysStorageConvert
	LlStgsysStorageOpen
	LlStgsysStoragePrint
	LsMailConfigurationDialog
	LsMailGetOptionString
	LsMailJobClose
	LsMailJobOpen
	LsMailSendFile
	LsMailSetOptionString
	LsSetDebug

	7. The Export Modules
	7.1 Overview
	7.2 Programming Interface
	7.2.1 Global (De)activation of the Export Modules
	7.2.2 Switching Specific Export Modules On/Off
	7.2.3 Selecting/Querying the Output Format
	7.2.4 Setting Export-specific Options
	7.2.5 Export Without User Interaction
	7.2.6 Querying the Export Results

	7.3 Programming Reference
	7.3.1 Excel Export
	Overview
	Limitations
	Programming Interface

	7.3.2 HTML Export
	Overview
	Limitations
	Programming Interface
	Hyperlinks
	HTML Form Creation
	Text Objects
	Picture Objects

	7.3.3 JQM Export
	Overview
	Limitations
	Programming Interface

	7.3.4 MHTML Export
	Overview
	Programming Interface

	7.3.5 Picture Export
	Overview
	Limitations
	Programming Interface

	7.3.6 PDF Export
	Overview
	Limitations
	Programming Interface

	7.3.7 Powerpoint Export
	Overview
	Limitations
	Programming Interface

	7.3.8 RTF Export
	Overview
	Limitations
	Programming Interface

	7.3.9 SVG Export
	Overview
	Limitations
	Programming Interface
	Hyperlinks

	7.3.10 Text (CSV) Export
	Overview
	Limitations
	Programming Interface

	7.3.11 Text (Layout) Export
	Overview
	Limitations
	Programming Interface

	7.3.12 TTY Export
	Overview
	Programming Interface

	7.3.13 Windows Fax Export
	7.3.14 Word Export
	Overview
	Limitations
	Programming Interface

	7.3.15 XHTML/CSS Export
	Overview
	Limitations
	Programming Interface
	Hyperlinks

	7.3.16 XML Export
	Overview
	Limitations
	Programming Interface

	7.3.17 XPS Export
	Overview
	Programming Interface

	7.4 Digitally Sign Export Results
	7.4.1 Start Signature
	7.4.2 Programming Interface

	7.5 Send Export Results via E-Mail
	7.5.1 Setting Mail Parameters by Code

	7.6 Export Files as ZIP Compressed Archive

	8. Miscellaneous Programming Topics
	8.1 Passing NULL Values
	8.2 Rounding
	8.3 Optimizing Speed
	8.4 Project Parameters
	8.4.1 Parameter Types
	8.4.2 Querying Parameter Values While Printing
	8.4.3 Predefined Project Parameters
	8.4.4 Automatic Storage of Form Data

	8.5 Web Reporting
	8.6 Hints for Usage in Multiple Threads (Multithreading)

	9. Error Codes
	9.1 General Error Codes
	9.2 Additional Error Codes of the Storage API

	10. Debug Tool Debwin
	11. Redistribution: Shipping the Application
	11.1 System Requirements
	11.2 64 Bit Modules
	11.3 The Standalone Viewer Application
	11.3.1 Overview
	11.3.2 Command Line Parameters
	11.3.3 Registration
	11.3.4 Necessary Files

	11.4 List & Label Files
	11.5 Other Settings

	12. Update Information for Version 20
	12.1 Overview
	12.1.1 General/API
	12.1.2 New features

	12.2 Updating to List & Label 20
	12.2.1 General
	12.2.2 Updating .NET Projects
	12.2.3 What's New
	12.2.4 Changes Compared to the Previous Version
	12.2.5 Updating Projects Using the OCX (e.g. Visual Basic)
	12.2.6 Updating Projects Using the VCL (e.g. Delphi)
	12.2.7 Updating Projects Using the API (e.g. C/C++)

	13. Help and Support
	14. Index

